Равномерное распределение вероятностей непрерывной случайной величины. Равномерное распределение

Этот вопрос уже давно подробно изучен, и наиболее широкое распространение получил метод полярных координат, предложенный Джорджем Боксом, Мервином Мюллером и Джорджем Марсальей в 1958 году. Данный метод позволяет получить пару независимых нормально распределенных случайных величин с математическим ожиданием 0 и дисперсией 1 следующим образом:

Где Z 0 и Z 1 - искомые значения, s = u 2 + v 2 , а u и v - равномерно распределенные на отрезке (-1, 1) случайные величины, подобранные таким образом, чтобы выполнялось условие 0 < s < 1.
Многие используют эти формулы, даже не задумываясь, а многие даже и не подозревают об их существовании, так как пользуются готовыми реализациями. Но есть люди, у которых возникают вопросы: «Откуда взялась эта формула? И почему получается сразу пара величин?». Далее я постараюсь дать наглядный ответ на эти вопросы.


Для начала напомню, что такое плотность вероятности, функция распределения случайной величины и обратная функция. Допустим, есть некая случайная величина, распределение которой задано функцией плотности f(x), имеющей следующий вид:

Это означает, что вероятность того, что значение данной случайной величины окажется в интервале (A, B), равняется площади затененной области. И как следствие, площадь всей закрашенной области должна равняться единице, так как в любом случае значение случайной величины попадет в область определения функции f.
Функция распределения случайной величины является интегралом от функции плотности. И в данном случае ее примерный вид будет такой:

Тут смысл в том, что значение случайной величины будет меньше чем A с вероятностью B. И как следствие, функция никогда не убывает, а ее значения лежат в отрезке .

Обратная функция - это функция, которая возвращает аргумент исходной функции, если в нее передать значение исходной функции. Например, для функции x 2 обратной будет функция извлечения корня, для sin(x) это arcsin(x) и т.д.

Так как большинство генераторов псевдослучайных чисел на выходе дают только равномерное распределение, то часто возникает необходимость его преобразования в какое-либо другое. В данном случае в нормальное Гауссовское:

Основу всех методов преобразования равномерного распределения в любое другое составляет метод обратного преобразования. Работает он следующим образом. Находится функция, обратная функции необходимого распределения, и в качестве аргумента передается в нее равномерно распределенная на отрезке (0, 1) случайная величина. На выходе получаем величину с требуемым распределением. Для наглядности привожу следующую картинку.

Таким образом, равномерный отрезок как бы размазывается в соответствии с новым распределением, проецируясь на другую ось через обратную функцию. Но проблема в том, что интеграл от плотности Гауссовского распределения вычисляется непросто, поэтому вышеперечисленным ученым пришлось схитрить.

Существует распределение хи-квадрат (распределение Пирсона), которое представляет собой распределение суммы квадратов k независимых нормальных случайных величин. И в случае, когда k = 2, это распределение является экспоненциальным.

Это означает, что если у точки в прямоугольной системе координат будут случайные координаты X и Y, распределенные нормально, то после перевода этих координат в полярную систему (r, θ) квадрат радиуса (расстояния от начала координат до точки) будет распределен по экспоненциальному закону, так как квадрат радиуса - это сумма квадратов координат (по закону Пифагора). Плотность распределения таких точек на плоскости будет выглядеть следующим образом:


Так как она равноценна во всех направлениях, угол θ будет иметь равномерное распределение в диапазоне от 0 до 2π. Справедливо и обратное: если задать точку в полярной системе координат с помощью двух независимых случайных величин (угла, распределенного равномерно, и радиуса, распределенного экспоненциально), то прямоугольные координаты этой точки будут являться независимыми нормальными случайными величинами. А экспоненциальное распределение из равномерного получить уже гораздо проще, с помощью того же метода обратного преобразования. В этом и заключается суть полярного метода Бокса-Мюллера.
Теперь выведем формулы.

(1)

Для получения r и θ нужно сгенерировать две равномерно распределенные на отрезке (0, 1) случайные величины (назовем их u и v), распределение одной из которых (допустим v) необходимо преобразовать в экспоненциальное для получения радиуса. Функция экспоненциального распределения выглядит следующим образом:

Обратная к ней функция:

Так как равномерное распределение симметрично, то аналогично преобразование будет работать и с функцией

Из формулы распределения хи-квадрат следует, что λ = 0,5. Подставим в эту функцию λ, v и получим квадрат радиуса, а затем и сам радиус:

Угол получим, растянув единичный отрезок до 2π:

Теперь подставим r и θ в формулы (1) и получим:

(2)

Эти формулы уже готовы к использованию. X и Y будут независимы и распределены нормально с дисперсией 1 и математическим ожиданием 0. Чтобы получить распределение с другими характеристиками достаточно умножить результат функции на среднеквадратическое отклонение и прибавить математическое ожидание.
Но есть возможность избавиться от тригонометрических функций, задав угол не прямо, а косвенно через прямоугольные координаты случайной точки в круге. Тогда через эти координаты можно будет вычислить длину радиус-вектора, а потом найти косинус и синус, поделив на нее x и y соответственно. Как и почему это работает?
Выберем случайную точку из равномерно распределенных в круге единичного радиуса и обозначим квадрат длины радиус-вектора этой точки буквой s:

Выбор осуществляется заданием случайных прямоугольных координат x и y, равномерно распределенных в интервале (-1, 1), и отбрасыванием точек, которые не принадлежат кругу, а также центральной точки, в которой угол радиус-вектора не определен. То есть должно выполниться условие 0 < s < 1. Тогда, как и в случае с Гауссовским распределением на плоскости, угол θ будет распределен равномерно. Это очевидно - количество точек в каждом направлении одинаково, значит каждый угол равновероятен. Но есть и менее очевидный факт - s тоже будет иметь равномерное распределение. Полученные s и θ будут независимы друг от друга. Поэтому мы можем воспользоваться значением s для получения экспоненциального распределения, не генерируя третью случайную величину. Подставим теперь s в формулы (2) вместо v, а вместо тригонометрических функций - их расчет делением координаты на длину радиус-вектора, которая в данном случае является корнем из s:

Получаем формулы, как в начале статьи. Недостаток этого метода - отбрасывание точек, не вошедших в круг. То есть использование только 78,5% сгенерированных случайных величин. На старых компьютерах отсутствие тригонометрических функций всё равно давало большое преимущество. Сейчас, когда одна команда процессора за мгновение вычисляет одновременно синус и косинус, думаю, эти методы могут еще посоревноваться.

Лично у меня остается еще два вопроса:

  • Почему значение s распределено равномерно?
  • Почему сумма квадратов двух нормальных случайных величин распределена экспоненциально?
Так как s - это квадрат радиуса (для простоты радиусом я называю длину радиус-вектора, задающего положение случайной точки), то сначала выясним, как распределены радиусы. Так как круг заполнен равномерно, очевидно, что количество точек с радиусом r пропорционально длине окружности радиуса r. А длина окружности пропорциональна радиусу. Значит плотность распределения радиусов возрастает равномерно от центра окружности к её краям. А функция плотности имеет вид f(x) = 2x на интервале (0, 1). Коэффициент 2 для того, чтобы площадь фигуры под графиком равнялась единице. При возведении такой плотности в квадрат, она превращается в равномерную. Так как теоретически в данном случае для этого необходимо функцию плотности разделить на производную от функции преобразования (то есть от x 2). А наглядно это происходит так:

Если аналогичное преобразование сделать для нормальной случайной величины, то функция плотности ее квадрата окажется похожей на гиперболу. А сложение двух квадратов нормальных случайных величин уже гораздо более сложный процесс, связанный с двойным интегрированием. И то, что в результате получится экспоненциальное распределение, лично мне тут остаётся проверить практическим методом или принять как аксиому. А кому интересно, предлагаю ознакомиться с темой поближе, почерпнув знаний из этих книжек:

  • Вентцель Е.С. Теория вероятностей
  • Кнут Д.Э. Искусство Программирования, том 2

В заключение приведу пример реализации генератора нормально распределенных случайных чисел на языке JavaScript:

Function Gauss() { var ready = false; var second = 0.0; this.next = function(mean, dev) { mean = mean == undefined ? 0.0: mean; dev = dev == undefined ? 1.0: dev; if (this.ready) { this.ready = false; return this.second * dev + mean; } else { var u, v, s; do { u = 2.0 * Math.random() - 1.0; v = 2.0 * Math.random() - 1.0; s = u * u + v * v; } while (s > 1.0 || s == 0.0); var r = Math.sqrt(-2.0 * Math.log(s) / s); this.second = r * u; this.ready = true; return r * v * dev + mean; } }; } g = new Gauss(); // создаём объект a = g.next(); // генерируем пару значений и получаем первое из них b = g.next(); // получаем второе c = g.next(); // снова генерируем пару значений и получаем первое из них
Параметры mean (математическое ожидание) и dev (среднеквадратическое отклонение) не обязательны. Обращаю ваше внимание на то, что логарифм натуральный.

В качестве примера непрерывной случайной величины рассмотрим случайную величину X, равномерно распределенную на интервале (a; b). Говорят, что случайная величина X равномерно распределена на промежутке (a; b), если ее плотность распределения непостоянна на этом промежутке:

Из условия нормировки определим значение константы c . Площадь под кривой плотности распределения должна быть равна единице, но в нашем случае - это площадь прямоугольника с основанием (b - α) и высотой c (рис. 1).

Рис. 1 Плотность равномерного распределения
Отсюда находим значение постоянной c:

Итак, плотность равномерно распределенной случайной величины равна

Найдем теперь функцию распределения по формуле:
1) для
2) для
3) для 0+1+0=1.
Таким образом,

Функция распределения непрерывна и не убывает (рис. 2).

Рис. 2 Функция распределения равномерно распределенной случайной величины

Найдем математическое ожидание равномерно распределенной случайной величины по формуле:

Дисперсия равномерного распределения рассчитывается по формуле и равна

Пример №1 . Цена деления шкалы измерительного прибора равна 0.2 . Показания прибора округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка: а) меньшая 0.04 ; б) большая 0.02
Решение. Ошибка округления есть случайная величина, равномерно распределенная на промежутке между соседними целыми делениями. Рассмотрим в качестве такого деления интервал (0; 0,2) (рис. а). Округление может проводиться как в сторону левой границы - 0, так и в сторону правой - 0,2, значит, ошибка, менее либо равная 0,04, может быть сделана два раза, что необходимо учесть при подсчете вероятности:



P = 0,2 + 0,2 = 0,4

Для второго случая величина ошибки может превышать 0,02 также с обеих границ деления, то есть она может быть либо больше 0,02, либо меньше 0,18.


Тогда вероятность появления такой ошибки:

Пример №2 . Предполагалось, что о стабильности экономической обстановки в стране (отсутствии войн, стихийных бедствий и т. д.) за последние 50 лет можно судить по характеру распределения населения по возрасту: при спокойной обстановке оно должно быть равномерным . В результате проведенного исследования, для одной из стран были получены следующие данные.

Имеются ли основания полагать, что в стране была нестабильная обстановка?

Решение проводим с помощью калькулятора Проверка гипотез . Таблица для расчета показателей.

Группы Середина интервала, x i Кол-во, f i x i * f i Накопленная частота, S |x - x ср |*f (x - x ср) 2 *f Частота, f i /n
0 - 10 5 0.14 0.7 0.14 5.32 202.16 0.14
10 - 20 15 0.09 1.35 0.23 2.52 70.56 0.09
20 - 30 25 0.1 2.5 0.33 1.8 32.4 0.1
30 - 40 35 0.08 2.8 0.41 0.64 5.12 0.08
40 - 50 45 0.16 7.2 0.57 0.32 0.64 0.16
50 - 60 55 0.13 7.15 0.7 1.56 18.72 0.13
60 - 70 65 0.12 7.8 0.82 2.64 58.08 0.12
70 - 80 75 0.18 13.5 1 5.76 184.32 0.18
1 43 20.56 572 1
Показатели центра распределения .
Средняя взвешенная


Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 70 - 0 = 70
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 43 не более, чем на 23.92
Проверка гипотез о виде распределения .
4. Проверка гипотезы о равномерном распределении генеральной совокупности.
Для того чтобы проверить гипотезу о равномерном распределении X,т.е. по закону: f(x) = 1/(b-a) в интервале (a,b)
надо:
1. Оценить параметры a и b - концы интервала, в котором наблюдались возможные значения X, по формулам (через знак * обозначены оценки параметров):

2. Найти плотность вероятности предполагаемого распределения f(x) = 1/(b * - a *)
3. Найти теоретические частоты:
n 1 = nP 1 = n = n*1/(b * - a *)*(x 1 - a *)
n 2 = n 3 = ... = n s-1 = n*1/(b * - a *)*(x i - x i-1)
n s = n*1/(b * - a *)*(b * - x s-1)
4. Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы k = s-3, где s - число первоначальных интервалов выборки; если же было произведено объединение малочисленных частот, следовательно, и самих интервалов, то s - число интервалов, оставшихся после объединения.

Решение:
1. Найдем оценки параметров a * и b * равномерного распределения по формулам:


2. Найдем плотность предполагаемого равномерного распределения:
f(x) = 1/(b * - a *) = 1/(84.42 - 1.58) = 0.0121
3. Найдем теоретические частоты:
n 1 = n*f(x)(x 1 - a *) = 1 * 0.0121(10-1.58) = 0.1
n 8 = n*f(x)(b * - x 7) = 1 * 0.0121(84.42-70) = 0.17
Остальные n s будут равны:
n s = n*f(x)(x i - x i-1)

i n i n * i n i - n * i (n i - n* i) 2 (n i - n * i) 2 /n * i
1 0.14 0.1 0.0383 0.00147 0.0144
2 0.09 0.12 -0.0307 0.000943 0.00781
3 0.1 0.12 -0.0207 0.000429 0.00355
4 0.08 0.12 -0.0407 0.00166 0.0137
5 0.16 0.12 0.0393 0.00154 0.0128
6 0.13 0.12 0.0093 8.6E-5 0.000716
7 0.12 0.12 -0.000701 0 4.0E-6
8 0.18 0.17 0.00589 3.5E-5 0.000199
Итого 1 0.0532
Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: . Найти функции распределения и функции плотности распределения величин

x(1) = min {x1,x2, ... xn} и x(2)= max{x1, x2, ...xn}.

Доказать, что Мhttps://pandia.ru/text/78/107/images/image147_0.gif" width="176" height="47">.

Случайная величина распределена по закону Коши Найти: а) коэффициент а; б) функцию распределения; в) вероятность попадания на интервал (-1, 1). Показать, что математическое ожидание x не существует. Случайная величина подчинена закону Лапласа с параметром l (l>0): Найти коэффициент а; построить графики плотности распределения и функции распределения; найти Mx и Dx; найти вероятности событий {|x|< и {çxç<}. Случайная величина x подчинена закону Симпсона на отрезке [-а, а], т. е. график её плотности распределения имеет вид:

Написать формулу для плотности распределения, найти Мx и Dx.

Вычислительные задачи.

Случайная точка А имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния r точки до центра круга. Показать, что величина r2 равномерно распределена на отрезке .

Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:
Вычислить константу C, функцию распределения F(x), , дисперсию и вероятность Случайная величина имеет функцию распределения

Вычислить плотность случайной величины, математическое ожидание, дисперсию и вероятность Проверить, что функция =
может быть функцией распределения случайной величины. Найти числовые характеристики этой величины: Mx и Dx. Случайная величина равномерно распределена не отрезке . Выписать плотность распределения. Найти функцию распределения. Найти вероятность попадания случайной величины на отрезок и на отрезок . Плотность распределения x равна

.

Найти постоянную с, плотность распределения h = и вероятность

Р (0,25

Время безотказной работы ЭВМ распределено по показательному закону с параметром l = 0,05 (отказа в час), т. е. имеет функцию плотности

р(х) =.

Решение определенной задачи требует безотказной работы машины в течение 15 минут. Если за время решения задачи произошел сбой, то ошибка обнаруживается только по окончании решения, и задача решается заново. Найти: а) вероятность того, что за время решения задачи не произойдет ни одного сбоя; б) среднее время, за которое будет решена задача.

Стержень длины 24 см ломают на две части; будем считать, что точка излома распределена равномерно по всей длине стержня. Чему равна средняя длина большей части стержня? Отрезок длины 12 см случайным образом разрезается на две части. Точка разреза равномерно распределена по всей длине отрезка. Чему равна средняя длина малой части отрезка? Случайная величина равномерно распределена на отрезке . Найти плотность распределения случайной величины а) h1 = 2x + 1; б) h2 =-ln(1-x); в) h3 = .

Показать, что если x имеет непрерывную функцию распределения

F(x) = P(x

Найти функцию плотности и функцию распределения суммы двух независимых величин x и h c равномерными законами распределения на отрезках и соответственно. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины независимы и имеют показательное распределение с плотностью . Найти плотность распределения их суммы. Найти распределение суммы независимых случайных величин x и h, где x имеет равномерное на отрезке распределение, а h имеет показательное распределение с параметром l. Найти Р, если x имеет: а) нормальное распределение с параметрами а и s2 ; б) показательное распределение с параметром l; в) равномерное распределение на отрезке [-1;1]. Совместное распределение x, h является равномерным в квадрате
К ={х, у): |х| +|у|£ 2}. Найти вероятность. Являются ли x и h независимыми? Пара случайных величин x и h равномерно распределена внутри треугольника K=. Вычислить плотность x и h. Являются ли эти случайные величины независимыми? Найти вероятность . Случайные величины x и h независимы и равномерно распределены на отрезках и [-1,1]. Найти вероятность . Двумерная случайная величина (x, h) равномерно распределена в квадрате с вершинами (2,0), (0,2), (-2, 0), (0,-2). Найти значение совместной функции распределения в точке (1, -1). Случайный вектор (x, h) равномерно распределен внутри круга радиуса 3 с центром в начале координат. Написать выражение для совместной плотности распределения. Определить, зависимы ли эти случайные величины. Вычислить вероятность . Пара случайных величин x и h равномерно распределена внутри трапеции с вершинами в точках (-6,0), (-3,4), (3,4), (6,0). Найти совместную плотность распределения для этой пары случайных величин и плотности составляющих. Зависимы ли x и h? Случайная пара (x, h) равномерно распределена внутри полукруга . Найти плотности x и h, исследовать вопрос об их зависимости. Совместная плотность двух случайных величин x и h равна .
Найти плотности x, h. Исследовать вопрос о зависимости x и h. Случайная пара (x, h) равномерно распределена на множестве . Найти плотности x и h, исследовать вопрос об их зависимости. Найти М(xh). Случайные величины x и h независимы и распределены по показательному закону с параметром Найти

С помощью которого моделируются многие реальные процессы. И самый такой распространённый пример – это график движения общественного транспорта. Предположим, что некий автобус (троллейбус / трамвай) ходит с интервалом в 10 минут, и вы в случайный момент времени подошли к остановке. Какова вероятность того, что автобус подойдёт в течение 1 минуты? Очевидно, 1/10-я. А вероятность того, что придётся ждать 4-5 минут? Тоже . А вероятность того, что автобус придётся ждать более 9 минут? Одна десятая!

Рассмотрим некоторый конечный промежуток, пусть для определённости это будет отрезок . Если случайная величина обладает постоянной плотностью распределения вероятностей на данном отрезке и нулевой плотностью вне него, то говорят, что она распределена равномерно . При этом функция плотности будет строго определённой:

И в самом деле, если длина отрезка (см. чертёж) составляет , то значение неизбежно равно – дабы получилась единичная площадь прямоугольника, и было соблюдено известное свойство :


Проверим его формально:
, ч.т.п. С вероятностной точки зрения это означает, что случайная величина достоверно примет одно из значений отрезка …, эх, становлюсь потихоньку занудным старикашкой =)

Суть равномерности состоит в том, что какой бы внутренний промежуток фиксированной длины мы ни рассмотрели (вспоминаем «автобусные» минуты) – вероятность того, что случайная величина примет значение из этого промежутка будет одной и той же. На чертеже я заштриховал троечку таких вероятностей – ещё раз заостряю внимание, что они определяются площадями , а не значениями функции !

Рассмотрим типовое задание:

Пример 1

Непрерывная случайная величина задана своей плотностью распределения:

Найти константу , вычислить и составить функцию распределения. Построить графики . Найти

Иными словами, всё, о чём только можно было мечтать:)

Решение : так как на интервале (конечном промежутке) , то случайная величина имеет равномерное распределение, и значение «цэ» можно отыскать по прямой формуле . Но лучше общим способом – с помощью свойства:

…почему лучше? Чтобы не было лишних вопросов;)

Таким образом, функция плотности:

Выполним чертёж. Значения невозможны , и поэтому жирные точки ставятся внизу:


В качестве экспресс-проверки вычислим площадь прямоугольника:
, ч.т.п.

Найдём математическое ожидание , и, наверное, вы уже догадываетесь, чему оно равно. Вспоминаем «10-минутный» автобус: если случайным образом подходить к остановке много-много дней упаси, то в среднем его придётся ждать 5 минут.

Да, именно так – матожидание должно находиться ровно посерединке «событийного» промежутка:
, как и предполагалось.

Дисперсию вычислим по формуле . И вот тут нужен глаз да глаз при вычислении интеграла:

Таким образом, дисперсия :

Составим функцию распределения . Здесь ничего нового:

1) если , то и ;

2) если , то и:

3) и, наконец, при , поэтому:

В результате:

Выполним чертёж:


На «живом» промежутке функция распределения растёт линейно , и это ещё один признак, что перед нами равномерно распределённая случайная величина. Ну, ещё бы, ведь производная линейной функции – есть константа.

Требуемую вероятность можно вычислить двумя способами, с помощью найденной функции распределения:

либо с помощью определённого интеграла от плотности:

Кому как нравится.

И здесь ещё можно записать ответ : ,
, графики построены по ходу решения.

…«можно», потому что за его отсутствие обычно не карают. Обычно;)

Для вычисления и равномерной случайной величины существуют специальные формулы, которые я предлагаю вам вывести самостоятельно:

Пример 2

Непрерывная случайная величина задана плотностью .

Вычислить математическое ожидание и дисперсию. Результаты максимально упростить (формулы сокращённого умножения в помощь) .

Полученные формулы удобно использовать для проверки, в частности, проверьте только что прорешанную задачу, подставив в них конкретные значения «а» и «б». Краткое решение внизу страницы.

И в заключение урока мы разберём парочку «текстовых» задач:

Пример 3

Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Считая, что погрешности округлений распределены равномерно, найти вероятность того, что при очередном измерении она не превзойдёт 0,04.

Для лучшего понимания решения представим, что это какой-нибудь механический прибор со стрелкой, например, весы с ценой деления 0,2 кг, и нам предстоит взвесить кота в мешке. Но не в целях выяснить его упитанность – сейчас будет важно, ГДЕ между двумя соседними делениями остановится стрелка.

Рассмотрим случайную величину – расстояние стрелки от ближайшего левого деления. Или от ближайшего правого, это не принципиально.

Составим функцию плотности распределения вероятностей:

1) Так как расстояние не может быть отрицательным, то на интервале . Логично.

2) Из условия следует, что стрелка весов с равной вероятностью может остановиться в любом месте между делениями* , включая сами деления, и поэтому на промежутке :

* Это существенное условие. Так, например, при взвешивании кусков ваты или килограммовых пачек соли равномерность будет соблюдаться на куда более узких промежутках.

3) И поскольку расстояние от БЛИЖАЙШЕГО левого деления не может быть больше, чем 0,2, то при тоже равна нулю.

Таким образом:

Следует отметить, что о функции плотности нас никто не спрашивал, и её полное построения я привёл исключительно в познавательных цепях. При чистовом оформлении задачи достаточно записать только 2-й пункт.

Теперь ответим на вопрос задачи. Когда погрешность округления до ближайшего деления не превзойдёт 0,04? Это произойдёт тогда, когда стрелка остановится не далее чем на 0,04 от левого деления справа или не далее чем на 0,04 от правого деления слева . На чертеже я заштриховал соответствующие площади:

Осталось найти эти площади с помощью интегралов . В принципе, их можно вычислить и «по-школьному» (как площади прямоугольников), но простота не всегда находит понимание;)

По теореме сложения вероятностей несовместных событий :

– вероятность того, что ошибка округления не превзойдёт 0,04 (40 грамм для нашего примера)

Легко видеть, что максимально возможная погрешность округления составляет 0,1 (100 грамм) и поэтому вероятность того, что ошибка округления не превзойдёт 0,1 равна единице.

Ответ : 0,4

В других источниках информации встречаются альтернативные объяснения / оформление этой задачи, и я выбрал вариант, который показался мне наиболее понятным. Особое внимание нужно обратить на то, что в условии речь может идти о погрешностях НЕ округлений, а о случайных погрешностях измерений, которые, как правило (но не всегда) , распределены по нормальному закону . Таким образом, всего лишь одно слово может в корне изменить решение! Будьте начеку и вникайте в смысл.

И коль скоро всё идёт по кругу, то ноги нас приносят на ту же автобусную остановку:

Пример 4

Автобусы некоторого маршрута идут строго по расписанию и интервалом 7 минут. Составить функцию плотности случайной величины – времени ожидании очередного автобуса пассажиром, который наудачу подошёл к остановке. Найти вероятность того, что он будет ждать автобус не более трёх минут. Найти функцию распределения и пояснить её содержательный смысл.

Равномерное распределение. Случайная величина X имеет смысл координаты точки, выбранной наудачу на отрезке

[а, Ь. Равномерную плотность распределения случайной величины X (рис. 10.5, а) можно определить как:

Рис. 10.5. Равномерное распределение случайной величины: а - плотность распределения; б - функция распределения

Функция распределения случайной величины X имеет вид:

График функции равномерного распределения показан на рис. 10.5, б.

Преобразование Лапласа равномерного распределения вычислим по (10.3):

Математическое ожидание и дисперсия легко вычисляются непосредственно из соответствующих определений:

Аналогичные формулы для математического ожидания и дисперсии можно также получить с использованием преобразования Лапласа по формулам (10.8), (10.9).

Рассмотрим пример системы сервиса, которую можно описать равномерным распределением.

Движение транспорта на перекрестке регулируется автоматическим светофором, в котором 1 мин горит зеленый свет и 0,5 мин - красный. Водители подъезжают к перекрестку в случайные моменты времени с равномерным распределением, не связанным с работой светофора. Найдем вероятность того, что автомобиль проедет перекресток, не останавливаясь.

Момент проезда автомобиля через перекресток распределен равномерно в интервале 1 + 0,5 = 1,5 мин. Автомобиль проедет через перекресток, не останавливаясь, если момент проезда перекрестка попадает в интервал времени . Для равномерно распределенной случайной величины в интервале вероятность попадания в интервал равна 1/1,5=2/3. Время ожидания Г ож есть смешанная случайная величина. С вероятностью 2/3 она равна нулю, а с вероятностью 0,5/1,5 принимает любое значение между 0 и 0,5 мин. Следовательно, среднее время и дисперсия ожидания у перекрестка

Экспоненциальное (показательное) распределение. Для экспоненциального распределения плотность распределения случайной величины можно записать как:

где А называют параметром распределения.

График плотности вероятности экспоненциального распределения дан на рис. 10.6, а.

Функция распределения случайной величины с экспоненциальным распределением имеет вид


Рис. 10.6. Экспоненциальное распределение случайной величины: а - плотность распределения; б - функция распределения

График функции экспоненциального распределения показан на рис. 10.6, 6.

Преобразование Лапласа экспоненциального распределения вычислим по (10.3):

Покажем, что для случайной величины X, имеющей экспоненциальное распределение, математическое ожидание равно среднеквадратическому отклонению а и обратно параметру А,:

Таким образом, для экспоненциального распределения имеем: Можно также показать, что

т.е. экспоненциальное распределение полностью характеризуется средним значением или параметром X .

Экспоненциальное распределение обладает рядом полезных свойств, которые используются при моделировании систем сервиса. Например, оно не имеет памяти. Когда , то

Другими словами, если случайная величина соответствует времени, то распределение оставшейся длительности не зависит от времени, которое уже прошло. Данное свойство иллюстрирует рис. 10.7.


Рис. 10.7.

Рассмотрим пример системы, параметры функционирования которой можно описать экспоненциальным распределением.

При работе некоторого прибора в случайные моменты времени возникают неисправности. Время работы прибора Т от его включения до возникновения неисправности распределено по экспоненциальному закону с параметром X. При обнаружении неисправности прибор сразу поступает в ремонт, который продолжается время / 0 . Найдем плотность и функцию распределения промежутка времени Г, между двумя соседними неисправностями, математическое ожидание и дисперсию, а также вероятность того, что время Т х будет больше 2t 0 .

Так как ,то


Нормальное распределение. Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

Из (10.48) следует, что нормальное распределение определяется двумя параметрами - математическим ожиданием т и дисперсией а 2 . График плотности вероятности случайной величины с нормальным распределением при т= 0, а 2 =1 показан на рис. 10.8, а.


Рис. 10.8. Нормальный закон распределения случайной величины при т = 0, ст 2 = 1: а - плотность вероятности; 6 - функция распределения

Функция распределения описывается формулой

График функции распределения вероятности нормально распределенной случайной величины при т = 0, а 2 = 1 показан на рис. 10.8, б.

Определим вероятность того, что X примет значение, принадлежащее интервалу (а, р):

где - функция Лапласа, и вероятность того,

что абсолютное значение отклонения меньше положительного числа 6:

В частности, при т = 0 справедливо равенство:

Как видно, случайная величина с нормальным распределением может принимать как положительные значения, так и отрицательные. Поэтому для вычисления моментов необходимо использовать двустороннее преобразование Лапласа

Однако этот интеграл не обязательно существует. Если он существует, вместо (10.50) обычно используют выражение

которое называют характеристической функцией или производящей функцией моментов.

Вычислим по формуле (10.51) производящую функцию моментов нормального распределения:

После преобразования числителя подэкспоненциального выражения к виду получим

Интеграл

так как является интегралом нормальной плотности вероятности с параметрами т + so 2 и а 2 . Следовательно,

Дифференцируя (10.52), получим

Из данных выражений можно найти моменты:

Нормальное распределение широко распространено на практике, так как, согласно центральной предельной теореме, если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.

Рассмотрим пример системы, параметры которой можно описать нормальным распределением.

Предприятие изготовляет деталь заданного размера. Качество детали оценивается путем измерения ее размера. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением а - Юмкм. Найдем вероятность того, что ошибка измерения не будет превышать 15 мкм.

По (10.49) находим

Для удобства использования рассмотренных распределений сведем полученные формулы в табл. 10.1 и 10.2.

Таблица 10.1. Основные характеристики непрерывных распределений

Таблица 10.2. Производящие функции непрерывных распределений

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к непрерывным?
  • 2. Что такое преобразование Лапласа-Стилтьеса? Для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием преобразования Лапласа-Стилтьеса?
  • 4. Чему равно преобразование Лапласа суммы независимых случайных величин?
  • 5. Как вычислить среднее время и дисперсию времени перехода системы из одного состояния в другое с использованием сигнальных графов?
  • 6. Дайте основные характеристики равномерного распределения. Приведите примеры его использования в задачах сервиса.
  • 7. Дайте основные характеристики экспоненциального распределения. Приведите примеры его использования в задачах сервиса.
  • 8. Дайте основные характеристики нормального распределения. Приведите примеры его использования в задачах сервиса.