Какая из экосистем имеет наибольшую продуктивность. Какие экосистемы самые продуктивные

Лучистая энергия солнца, усваиваемая зелеными автотрофными растениями, превращается в энергию химических связей синтезируемого вещества. Скорость фиксации солнечной энергии определяет продуктивность сообществ. Продуктивность автотрофных организмов представляет собой первичную продуктивность . Продуктивность представителей других трофических уровней составляет вторичную продуктивность .

Основной показатель продуктивности - биомасса организмов (растительных и животных), составляющих экосистему. Биомасса - это выраженное в единицах массы или энергии количество живого вещества организмов, приходящееся на единицу площади или объема (например, г/м2, г/м3, кг/га, т/км2 и др.). Используют массу либо сырого, либо, чаще всего, сухого вещества. Различают растительную биомассу (фитомассу), животную (зоомассу), бактериомассу, либо биомассу каких-либо конкретных групп или организмов отдельных видов.

Величина биомассы меняется в зависимости от сезона года, миграций животных, от степени ее потребления.

Биомасса, производимая биоценозом на единице площади за единицу времени, называется биологической продукцией . Она выражается в тех же величинах, что и биомасса, но с указанием времени, за которое она создана (например, кг/га за месяц).

Различают 2 вида продукции - первичную и вторичную.

Первичная продукция - это биомасса, произведенная автотрофными организмами (зелёными растениями) на единице площади за единицу времени.

Суммарная продукция фотосинтеза называется первичной валовой продукцией . Это вся химическая энергия в форме произведенного органического вещества. При этом часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции - растений. Если мы изымем ту часть энергии, которая тратится растениями на дыхание, то получим чистую первичную продукцию .

Зеленые растения могут перерабатывать от 1 до 5% получаемой энергии Солнца. Животные, питающиеся растениями, для образования биомассы своего тела используют всего 1% энергии, содержащейся в растительном материале.

Вторичная продукция - это биомасса, созданная всеми консументами экосистемы за единицу времени.

В целом вторичная продукция колеблется от 1 до 10% в зависимости от свойств животного и особенностей поедаемого корма.

По участию в биологическом круговороте веществ в экосистеме различают 3 группы организмов.

  • 1 Продуценты (автотрофные организмы). Являясь организмами-продуцентами, автотрофы синтезируют с помощью солнечного света из СО2 и Н2O, а также неорганических солей почвы органические соединения, преобразуя при этом световую энергию в химическую. Они обеспечивают органическими веществами и энергией все живое население биоценоза.
  • 2 Консументы (потребители). Они не способны синтезировать вещества своего тела из неорганических составляющих. К ним относятся все животные, которые извлекают необходимую энергию из готовой пищи, поедая растения или других животных. Первичными консументами являются растительноядные животные (фитофаги), питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковицами и даже древесиной (некоторые насекомые). Ко вторичным консументам относят плотоядных животных (хищников).

3 Редуценты (от лат. reducens, reducentis - возвращающий, восстанавливающий) - микроорганизмы и грибы, разрушающие мертвое органическое вещество и превращающие его в воду, СО2 и неорганические вещества, которые в состоянии усваивать другие организмы (продуценты). Основными редуцентами являются бактерии, грибы, простейшие, т.е. гетеротрофные микроорганизмы.

Осуществляя пищевые взаимодействия, организмы биоценоза выполняют 3 функции :

  • 1) энергетическую - выражается в запасании энергии в форме химических связей первичного органического вещества; её выполняют организмы-продуценты;
  • 2) перераспределения и переноса энергии пищи - её выполняют консументы;
  • 3) разложения органического вещества редуцентами до простых минеральных соединении, которые снова вовлекаются в биологический круговорот организмами-продуцентами.

Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, происходящий в результате поедания одними организмами других, называется пищевой цепью . Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5.

Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи, носит название трофический уровень . К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Пищевые цепи, которые начинаются с автотрофных фото-синтезирующих организмов, называются пастбищными, или цепями выедания .

Если пищевая цепь начинается с отмерших остатков растений, трупов и экскрементов животных (детрита), она называется детритной, или цепью разложения .

В биоценозах обычно существует ряд параллельных пищевых цепей - пищевая сеть . Сокращение численности особей одного вида - звена в пищевой цепи, вызванное деятельностью человека или другими причинами, неизбежно приводит к нарушениям целостности экосистемы.

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов приобретает определенную трофическую структуру. Трофическую структуру обычно отображают графическими моделями в виде экологических пирамид.

Эффект пирамиды в виде таких моделей разработал в 1927 г. английский зоолог Чарлз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а последующие уровни образуют консументы различных порядков. При этом высота всех блоков одинакова, а длина - пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

  • 1 Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).
  • 2 Пирамида биомасс - соотношение между организмами разных трофических уровней (продуцентами, консументами и редуцентами), выраженное в их массе. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели общая масса консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную (или перевернутую) пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели биомасса консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона его общая масса в данный момент может быть меньше, нежели масса потребителей-консументов (киты, крупные рыбы, моллюски).

3. Пирамида энергии отражает величину потока энергии, скорость прохождения массы нищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Пирамида энергии, в отличие от пирамид чисел и биомасс, всегда суживается кверху.

Потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная её часть тратится на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается. Продукция каждого последующего уровня примерно в 10 раз меньше продукции предыдущего.

В 1942 г. Р. Линдеман сформулировал закон пирамиды энергии (или закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии . Остальная её часть теряется в виде теплового излучения. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей.

Продуктивность водных экосистем

Продуктивность водных экосистем неодинакова и в значительной степени определяется доступностью определенных питательных веществ.

В пределах эвфотической зоны свет не является лимитирующим фактором, поскольку в прозрачной среде фитопланктон распределяется во всей толще эвфотической зоны, а в мутной он концентрируется ближе к поверхности воды, где интенсивность света выше. Не оказывает существенного влияния на продуктивность морских экосистем и температура воды, чем и объясняется тот факт, что в холодных водах умеренной зоны продуктивность фитопланктона такая же, как и в теплых водах Индийского океана или Карибского моря.

Поскольку доступность минеральных веществ уменьшается в направлении от континента в открытый океан, то в этом же направлении уменьшается и продуктивность. Так, в прибрежных мелководных заливах (эстуариях) она составляет $2000 \ г/ м^2$ в год, в районе шельфа - $500 \ г/ м^2$ в год и менее $100 \ г/ м^2$ в год - в открытом океане, или соответственно $10,5 \ и \ 2.1 \ МДж/ м^2$ в год.

Продуктивность наземных экосистем

Средняя продуктивность наземных местообитаний (без учета площади полярпых ледниковых шапок) составляет около $1000 \ г/ м^2$ в год ($16.38 \ Мдж / м^2$ в год), что соответствует ассимиляции примерно 0,3 % световой энергии. Вместе с тем разнообразие наземных местообитаний является причиной их неодинаковой продуктивпости. Благоприятное сочетание интенсивности солнечного света, тепла, влаги делает тропики наиболее продуктивными экосистемами - в среднем около $5000 \ г/ м^2$ в год. Продуктивность экосистем умеренных и арктических областей суши снижается вследствие низких температур и длинных ночей зимой. Недостаток влаги ограничивает продукцию растений в засушливых областях. Продуктивность экосистем указанных зон колеблется в пределах $100 - 500 \ г/ м^2$ в год.

Наиболее продуктивны на суше экосистемы болот и дельт рек. В тропических болотах она достигает $7000 \ г/ м^2$ в год, а в болотах умеренной зоны - $4000 \ г/ м^2$ 3 год. Высокая продуктивность болот объясняется тем, что корни болотных растений постоянно находятся в воде, а листья - на свету и в воздухе, благодаря чему они одновременно пользуются благами как водной, так и наземной сред.

Продуктивностъ возделываемых человеком земель (агроэкосистем) обычно несколько ниже природных экосистем этой же зоны, что связано с сокращением времени (вегетации) создания продукции. Кроме того, в сельскохозяйственных экосистемах возделывается ограниченный набор культур, которые не так эффективно используют ресурсы среды (свет, влагу, питательные вещества), как виды природных экосистем.

Пример 1

Чистая первичная продукция выращиваемых в умеренной зоне зерновых культур (пшеница, рожь, ячмень, овес, кукуруза),картофеля, сена колеблется от $250 \ до \ 500 \ г/ м^2$ в год ($5.25- 10.5 \ МА, \ к/ м^2$ в год), а продуктивность сахарной свеклы обычно вдвое выше, для сравнения заметим, что продуктивность лесов в этой зоне колеблется от $600 \ до \ 2500 \ г/ м^2$ в год ($37.8 525.0 \ МДж/ м^2$ в год), а степей - $150 - 1500 \ г/ м^2$ в год.

Продуктивность всех возделываемых земель варьируется от $100 \ до \ 4000 \ г/ м^2$ в под в зависимости от выращиваемой культуры, что в среднем составляет $650 \ г/ м^2$ в год, или $13,65 \ МДж/ м^2$ в год.

Искусственное орошение и внесение удобрений могут повысить урожаи сельскохозяйственных культур в 3-4 раза по сравнению со средними величинами для всего мира. Так, продукция сахарного тростника – культуры, широко распространенной в тропическом земледелии. - составляет в среднем $1700 \ г/ м^2$ в год. При интенсивной же его культуре продуктивность увеличивается вдвое.

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.

    Биологическая продукция – это количество биологического вещества, которое создано за единицу времени на единицу площади (гр/м², кг/м²).

    Биологическая продукция:

    Первичная (валовая); Вторичная (чистая).

    Валовая продукция - это та продукция, которую создают растения в процессе фотосинтеза.

    Чистая продукция – это та часть энергии, которая осталась после расходов на дыхание.

    Средняя продуктивность экосистем земли не превышает 0,3кг/м². При переходе энергии с одного уровня на другой, теряется примерно 90% энергии, поэтому вторичная продукция в 20-50 раз меньше, чем первичная

    Производительность экосистемы, измеряемая количеством органического вещества, которое создано за единицу времени на единицу площади, называется биологической продуктивностью. Единицы измерения продуктивности: г/м² в день, кг/м² в год, т/км ² в год.

    Различают первичную биологическую продукцию, которую создают продуценты, и вторичную биологическую продукцию, которую создают консументы и редуценты.

    Первичную продукцию подразделяют на: валовую – это общее количество созданного органического вещества, и чистую – это то, что осталось после расхода на дыхание и корневые выделения.

    По продуктивности экосистемы делятся на четыре класса:

    1.Экосистемы очень высокой биологической продуктивности – свыше 2 кг/м² в год. К ним относятся заросли тростника в дельтах Волги, Дона и Урала.

    2.Экосистемы высокой продуктивности – 1-2 кг/м² в год. Это липово-дубовые леса, заросли рогоза или тростника на озере, посевы кукурузы.

    3.Экосистемы средней биологической продуктивности – 0,25-1 кг/м² в год. К ним относятся сосновые, берёзовые леса, сенокосные луга, степи.

    4.Экосистемы низкой биологической продуктивности – менее 0,25 кг/м² в год.

    Это арктические пустыни, тундры, большая часть морских экосистем.

    Средняя продуктивность экосистем земли составляет 0,3 кг/м² в год, т. е. на Земле преобладают средние и низкопродуктивные экосистемы.

    При переходе с одного трофического уровня на другой теряется 90% энергии.

    Примером повышенной продуктивности на стыках экосистем мо­гут служить переходные экосистемы между лесом и полем («опу­шечный эффект»), а в водных средах - экосистемы, возникающие в эстуариях рек (места впадения их в моря, океаны и озера и т. п.).

    Этими же закономерностями во многом обусловливаются упо­минавшиеся выше локальные сгущения больших масс живого ве­щества (наиболее высокопродуктивные экосистемы).

    Обычно в океане выделяют следующие сгущения жизни:

    1. Прибрежные. Они располагаются на контакте водной и наземно-воздушной среды. Особенно высокопродуктивны экосистемы эстуариев. Протяженность этих сгущений тем значительнее, чем больше вынос реками органических и минеральных веществ с суши.

    2. Коралловые рифы. Высокая продуктивность этих экосистем связана прежде всего с благоприятным температурным режимом, фильтрационным типом питания многих организмов, видовым бо­гатством сообществ, симбиотическими связями и другими факто­рами.

    3. Саргассовые сгущения. Создаются большими массами плавающих водорослей, чаще всего саргассовых (в Саргассовом море) и филлофорных (в Черном море).

    4. Апвеллинговые. Эти сгущения приурочены к районам океана, где имеет место восходя­щее движение водных масс от дна к поверхности (апвеллинг). Они несут много донных органических и минеральных отложений и в результате активного перемешивания хорошо обеспечены кисло­родом. Эти высокопродуктивные экосистемы являются одним из основных районов промысла рыб и других морепродуктов.

    5. Рифтовые глубоководные (абиссальные) сгущения. Эти экосистемы были открыты только в 70-х годах настоящего столетия. Они уникальны по своей природе: существуют на больших глубинах (2-3 тыс. метров). Первичная продукция в них образуется только в результате процессов хемосинтеза за счет высвобождения энергии из сернистых соединений, поступающих из разломов дна (рифтов). Высокая продуктивность здесь обязана прежде всего благо­приятным температурным условиям, поскольку разломы одновременно являются очагами выхода из недр подогретых (термальных) вод. Это единственные экосистемы, не использующие солнечную энергию. Они живут за счет энергии недр Земли.

    На суше к наиболее высокопродуктивным экосистемам (сгущениям живого вещества) относят: 1) экосистемы берегов морей и океанов в районах, хорошо обеспеченных теплом; 2) экосистемы пойм, периодически заливаемые водами рек, которые откладывают ил, а вместе с ним органические и биогенные вещества, 3) экосистемы небольших внутренних водоемов, бога­тые питательными веществами, а также 4) экосистемы тро­пических лесов. Продуктивность других экосистем видна из табл.3. Выше мы уже отмечали, что человек должен стремиться сохранить высокопродуктивные экосистемы - этот мощнейший каркас биосферы. Его разрушение связано с наиболее значительными отрицательными последствиями для всей биосферы.

    Что касается вторичной (животной) продукции, то она заметно выше в океане, чем в наземных экосистемах. Это связано с тем, что на суше в звено консументов (травоядных) в среднем включается лишь около 10% первичной продукции, а в океане - до 50%. Поэтому, несмотря на более низкую первичную продуктивность океана, чем суши, по массе вторичной продукции эти экосистемы примерно равны.

    В наземных экосистемах основную продукцию (до 50%) и особенно биомассу (около 90%) дают лесные экосистемы. Вместе с тем основная масса этой продукции поступает сразу в звено деструкторов и редуцентов. Для таких экосистем характерно преобладание детритных (за счет мертвого органического вещества) цепей питания. В травянистых экосистемах (луга, степи, прерии, саванны), как и в океане, значительно большая часть первичной продукции прижизненно отчуждается фитофагами (травоядными животными). Такие цепи носят название пастбищных или цепей выеданния.

    Количество лучистой энергии, превращенной автотрофными организмами, т. е. в основном хлорофиллоносными растениями, в энергию химическую, называют первичной продуктивностью биоценоза .

    Различают продуктивность: валовую, охватывающую всю химическую энергию в форме произведенного органического вещества, в том числе и той его части, которая окисляется в процессе дыхания и затрачивается на поддержание жизнедеятельности растений, и чистую, соответствующую прибавке органического вещества в растениях.

    Чистую продуктивность определяют теоретически очень простым способом. Для этого собирают, высушивают и взвешивают растительную массу, которая выросла в течение определенного времени. Разумеется, этот метод дает хорошие результаты только в том случае, когда его применяют к растениям с момента их посева до сбора. Чистую продуктивность можно также определить с помощью герметических сосудов, измеряя, с одной стороны, количество поглощенной в единицу времени углекислоты или выделенного кислорода на свету, с другой стороны - в темноте, где ассимиляционная деятельность хлорофилла прекращается. В этом случае измеряют количество поглощенного в единицу времени кислорода и количество выделенной углекислоты и оценивают таким образом величину газообмена. Прибавляя полученные значения к чистой продуктивности, получают валовую продуктивность. Можно также воспользоваться методом радиоактивных индикаторов или определением количества хлорофилла на единицу площади поверхности листа. Принцип этих приемов прост, однако их применение на практике часто требует большой тщательности операций, без которой невозможно получить точные результаты.

    Приведены некоторые данные по отдельным биоценозам, полученные этими методами. В данном случае оказалось возможным одновременно измерить и валовую, и чистую продуктивность. В природных экосистемах (две первые) дыхание уменьшает продуктивность более чем наполовину. На опытном поле люцерны дыхание молодых растений в период интенсивной вегетации берет мало энергии; взрослые же растения, закончившие рост, потребляют почти столько же энергии, сколько производят. По мере старения растения доля теряемой энергии растет. Максимальную продуктивность растений в период роста следует считать, таким образом, общей закономерностью.

    Удалось определить первичную валовую продуктивность измерением газового обмена в ряде водных естественных биоценозов.

    Наряду с уже упомянутыми данными для Силвер-Спрингс самая высокая продуктивность выявлена у коралловых рифов. Она образуется за счет зоохлорелл - симбионтов полипов и особенно нитчатых водорослей, обитающих в пустотах известковых скелетов, общая масса которых примерно в три раза превышает массу полипов. Были обнаружены биоценозы с еще более высокой продуктивностью в сточных водах шт. Индиана в США, но лишь в течение очень короткого срока и в наиболее благоприятный сезон года.

    Именно эти данные больше всего интересуют человека. Анализируя их, следует заметить, что продуктивность наилучших сельскохозяйственных культур не превосходит продуктивности растений природных местообитаний; их урожай сопоставим с урожаем растений, произрастающих в сходных по климату биоценозах. Рост этих культур часто идет быстрее, но их вегетация в общем носит сезонный характер. По этой причине они слабее используют солнечную энергию, чем экосистемы, функционирующие в течение всего года. По той же причине лес из вечнозеленых пород более продуктивен, чем лиственный.

    Местообитания с продуктивностью более 20 г/(м 2 ·сутки) следует считать исключением. Получены интересные данные. Несмотря на то, что лимитирующие факторы в разных средах различны, между продуктивностью наземных и водных экосистем нет большой разницы. В низких широтах наименьшей продуктивностью обладают пустыни и открытое море. Это настоящий биологический вакуум, занимающий наибольшее пространство. В то же время по соседству с ними находятся биоценозы с самой высокой продуктивностью - коралловые рифы, эстуарии, тропические леса. Но они занимают лишь ограниченную площадь. Следует также заметить, что их продуктивность - результат очень сложного равновесия, сложившегося на протяжении длительной эволюции, которой они обязаны своей исключительной эффективностью. Выкорчевка девственных лесов и их замена сельскохозяйственными угодьями приводят к весьма существенному снижению первичной продуктивности. Видимо, следует сохранять болотистые районы по причине их большой продуктивности.

    В северных и южных полярных районах продуктивность на суше очень невысока, так как солнечная энергия эффективна лишь в течение немногих месяцев в году; наоборот, в связи с низкой температурой воды морские сообщества, конечно, на небольшой глубине, относятся к числу наиболее богатых живым веществом местообитаний земного шара. В средних широтах много места, занимают малопродуктивные степи, но одновременно еще довольно обширные пространства покрыты лесами. Именно в этих районах сельскохозяйственные культуры дают наилучшие урожаи. Это зона с относительно высокой средней продуктивностью.

    Исходя из приведенных данных, различные авторы пытались оценить первичную продуктивность всего земного шара. Солнечная энергия, поступающая ежегодно на Землю, равна примерно 5·10 20 ккал, или 15,3·10 5 ккал/(м 2 ·год); однако из них лишь 4·10 5 , т. е. 400 000 ккал, достигают поверхности Земли, остальная же часть энергии отражается или поглощается атмосферой. Море покрывает 71% поверхности Земли, или 363 млн. км 2 , тогда как на сушу приходится 29%, или 148 млн. км 2 . На суше можно выделить следующие основные типы местообитаний: леса 40,7 млн. км 2 или 28% суши; степи и прерии 25,7 млн. км 2 или 17% суши; пашня 14 млн. км 2 или 10% суши; пустыни природные и искусственные (включая городские поселения), вечные снега высокогорий и полярных областей - 67,7 млн. км 2 (из которых 12,7 млн. км 2 приходятся на Антарктиду) или 45% суши.

    Этот перечень сделал Дювиньо. Американские исследователи получили вдвое большие цифры. Разница, следовательно, только в абсолютных значениях. Океан дает половину всей продуктивности, леса - третью часть, а пашни - едва одну десятую. Все эти данные получены исходя из содержания углекислого газа в атмосфере, в котором находится примерно 700 млрд. т углерода. Средний выход фотосинтеза по отношению к энергии, поступающей на Землю от Солнца, равен примерно 0,1%. Это очень мало. Тем не менее общая годовая продукция органического вещества и затраченная на нее энергия намного превышают эти показатели в совокупной деятельности человека.

    Если по первичной продуктивности имеются относительно достоверные данные, то, к сожалению, по продуктивности других трофических уровней данных гораздо меньше. Впрочем, в этом случае не вполне правомерно говорить о продуктивности; на самом деле здесь нет продуктивности, а происходит всего лишь использование пищи для образования нового живого вещества. Было бы правильнее применительно к этим уровням говорить об ассимиляции.

    Относительно просто определить величину ассимиляции, когда дело касается содержания особей в искусственных условиях. Однако это скорее предмет физиологических, чем экологических исследований. Энергетический баланс животного за определенный период (например, в единицу времени) определяется следующим уравнением, члены которого выражены не в граммах, а в энергетических эквивалентах, т. е. в калориях: J = NA + PS + R,

    где J - потребленная пища; NA - неиспользованная часть пищи, выброшенная с экскрементами; PS - вторичная продуктивность животных тканей (например, прибавка массы); R - энергия, идущая на поддержание жизни животного и расходующаяся с дыханием.

    J и NА определяют с помощью калориметрической бомбы. Величина R может быть установлена по отношению количества выделенного углекислого газа к количеству поглощенного за то же время кислорода. Дыхательный коэффициент R отражает химическую природу окисленных молекул и заключенную в них энергию. Отсюда можно вывести вторичную продуктивность PS. В большинстве случаев ее определяют простым взвешиванием, если приблизительно известна энергетическая ценность синтезированных тканей. Возможность измерить все четыре члена уравнения позволяет оценить степень приближения, с которой получены их значения. Не надо предъявлять при этом слишком высокие требования, особенно если работа идет с мелкими животными.

    Отношение PS/J представляет наибольший интерес, особенно для животноводства. Оно выражает величину ассимиляции. Иногда пользуются также выходом ассимиляции (PS + R)/J, который соответствует доле энергии пищи, эффективно использованной животным, т. е. за вычетом экскрементов. У детритоядных животных он невысок: например, у многоножки Glomeris составляет 10%, а ее выход ассимиляции лежит между 0,5 и 5%. Этот показатель невысок и у травоядных: у свиньи, питающейся смешанной пищей, выход равен 9%, что уже представляет собой исключение для данного трофического уровня. Гусеницы выгадывают в этом отношении благодаря своей пойкилотермности: величина их ассимиляции достигает 17%. Вторичная продуктивность у плотоядных часто оказывается выше, но она весьма изменчива. Тестар наблюдал у личинок стрекоз по ходу метаморфоз снижение ассимиляции: у Anax parthenope с 40 до 8%, а у Aeschna суапеа, отличающейся замедленным ростом, с 16 до 10%. У хищного сенокосца Mitopus ассимиляция достигает в среднем 20%, т. е. оказывается очень высокой.

    При переносе данных, полученных в лаборатории, на природные популяции необходимо учитывать их демографическую структуру. У молодых особей вторичная продуктивность выше, чем у взрослых. Следует принимать во внимание также особенности размножения, например, его сезонность и ту или иную скорость. Сопоставляя популяции полевок Microtus pennsylvanicus и африканского слона, обнаруживаем уже довольно различный выход ассимиляции: 70 и 30% соответственно. Однако отношение потребленной пищи к биомассе составляет в год 131,6 для полевки и 10,1 для слона. Это означает, что популяция полевок ежегодно производит массу, в два с половиной раза превышающую исходную, тогда как популяция слонов всего 1/20 часть.

    Определение вторичной продуктивности экосистем сопряжено с большими трудностями, и мы располагаем лишь косвенными данными, например, биомассами на различных трофических уровнях. Соответствующие примеры уже приводились выше. Некоторые данные подводят к заключению, что первичная растительная продукция используется травоядными, а ещё более зерноядными

    животными очень неполно. Основательно изучена продуктивность пресноводных рыб в озерах и выкормочных водоемах. Продуктивность растительноядных рыб всегда ниже 10% чистой первичной продукции; продуктивность хищных рыб составляет в среднем 10% по отношению к растительноядным, которыми они питаются. Естественно, что в прудах, приспособленных для развитого рыбоводства, подобно тем, которые находятся в Китае, разводят растительноядные виды. Урожаи в них, во всяком случае, выше, чем при пастбищном скотоводстве, и это вполне естественно, поскольку млекопитающие относятся к гомойотермным животным. Поддержание постоянной температуры тела требует больших энергетических затрат и сопряжено с более интенсивным дыханием, а это сказывается на вторичной продуктивности. Впрочем, во многих странах с ограниченными пищевыми ресурсами потребление животной пищи является непозволительной роскошью, поскольку она слишком дорого обходится с точки зрения энергетических затрат экосистем. Приходится устранять этаж в пирамиде энергий, в которой человек занимает вершину, и производить исключительно зерно. Многомиллионное население Индии и стран Дальнего Востока почти целиком питается зерновыми и особенно рисом.

    1. Продуктивность и динамика экосистем.2.Человек и экосистемы.

    Одно из важнейших свойств организмов, их популяций и экосистем в целом – способность создавать органическое вещество, которое называют продукцией. Образование продукции в единицу времени (час, сутки, год) на единице площади (метры квадратные, гектар) или объёма (в водных экосистемах), выраженное в единицах массы (граммы, килограммы, тонны), характеризует продуктивность экосистем. Продуктивность экологической системы - это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое затем может быть использовано в качестве пищи. Различают разныеуровни продуцирования , на которых создаётся первичная и вторичная продукция. Органическое вещество, создаваемое продуцентами в процессе фотосинтеза или хемосинтеза, называютпервичной продукцией экосистемы (сообщества) . Количественно её выражают в сырой или сухой массе растений или в энергетических единицах – эквивалентном числе джоулей. Первичной продукцией определяется общий поток энергии через биотический компонент экосистемы. Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Первичная продукция подразделяется как бы на два уровня – валовую и чистую продукцию. Скорость, с которой растения накапливают химическую энергию, называетсяваловой первичной продуктивностью (ВВП). Около20% этой энергии расходуется растениями на дыхание и фотодыхание. Скорость накопления органического вещества, за вычетом этого расхода называетсячистой первичной продуктивностью (ЧПП), это энергия, которую могут использовать организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называетсявторичной продукцией. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счёт энергии, поступающей с предыдущего. Наряду с продукцией различаютбиомассу организма, групп организмов или экосистем в целом. Под ней понимаютвсё живое вещество, которое содержится в экосистеме или её элементах вне зависимости от того, за какой период она образовалась и накопилась. Первичная продукция биосферы Земли оценивается в 170 млрд. т, а вторичная – в 4 млрд. т сухого органического вещества в год. В климатических поясах среди природных экосистем преобладают те, которые получают энергию только от Солнца. К природным энергетически дотируемым (т.е. получающим дополнительную энергию) экосистемам относятся эстуарии, дельты и поймы рек, а также некоторые болота. К ним относятся также агроэкосистемы и аквакультуры, одновременно культивируемые человеком и получающие энергию Солнца. Особую категорию составляют промышленно-городские экосистемы, функционирующие с использованием только энергии топлива. Питание людей большей частью обеспечивается сельскохозяйственными культурами, занимающими около 10% площади суши. Всего человек потребляет около 0,2% первичной продукции Земли. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Следовательно, увеличение биологической продуктивности экосистем и особенно вторичной продукции является одной из основных задач, стоящих перед человечеством. Многообразные изменения, происходящие в любом сообществе, относят к двум основным типам: циклические и поступательные.Периодически повторяющуюся динамику называют циклическими изменениями или флуктуациями, а направленную динамику именуют поступательной или развитием экосистем. Циклические изменения сообществ отражают суточную, сезонную и многолетнюю периодичность внешних условий и проявления эндогенных ритмов организмов.Многолетняя цикличность проявляется благодаря флуктуациям климата.Флюктуация (от лат. fluctuatio – колебания) – сравнительно краткосрочные изменения, когда сообщества без смены флористического состава отклоняются от некоего среднего состояния вследствие сезонных и погодных изменений климата, а также изменения динамики животного компонента экосистемы либо способов их использования.Поступательные изменения в экосистеме приводят в конечном итоге к смене одного биоценоза другим, с иным набором господствующих видов.Последовательная смена одного биоценоза другим называется экологической сукцессией . Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называетсясукцессионной серией . По Ф. Клементсону (1916), процесс сукцессии состоит из следующих этапов: 1. Возникновение не занятого жизнью участка. 2. Миграции на него различных организмов или их зачатков. 3. Приживание их на данном участке. 4. Конкуренции их между собой и вытеснение отдельных видов. 5. Преобразование живыми организмами местообитания, постепенной стабилизации условий и отношений. Сукцессии со сменой растительности могут быть первичными и вторичными.Первичной сукцессии называется процесс развития в смены экосистем на незаселённых ранее участках, начинающихся с их колонизации.Вторичная сукцессия – это восстановление экосистемы, когда-то уже существовавшей на данной территории. Вторичные сукцессии совершаются, как правило, быстрее и легче, чем первичные, так как в нарушенном местообитании сохраняется почвенный профиль, семена, зачатки и часть прежнего населения и прежних связей. Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно постоянную численность и дальнейшей смены её состава не происходит. Такое равновесное состояние называют –климаксом , а экосистему –климаксовой . Способность экосистемы к самоподдержанию и саморегулированию называетсягомеостазом . Человек в конкурентной борьбе за выживание в природной окружающей среде начал строить свои искусственные антропогенные экосистемы.

    Агроэкосистемы создаются человеком для повышения высокого урожая – чистой продукции автотрофов. Упрощение природного окружения человека, с экологических позиций очень опасно. Поэтому нельзя превращать весь ландшафт в агрохозяйственный, необходимо сохранять и умножать его многообразие, оставляя не тронутые заповедные участки, которые могли бы быть источником видов для восстанавливающихся и сукцессионных рядов сообщества.

    Литература: 1. Коробкин В.И. и др. Экология. – М., 2003. с.130-150.2. Николайкин Н.И. и др. Экология. – М., 2004. с.155-163, 171-180.3. Аскарова М.А. Общая экология. – Алматы, 2004. с. 86-94.4. Степановских А.С. Общая экология. – М., 1999. с. 404-419.