11 формулы логарифмов. Логарифм

Логарифмы и правила действий с ними достаточно емкие и простые. Следовательно, разобраться в данной теме вам не составит труда. После того как вы узнаете все правила натуральных логарифмов, любая задача решится самостоятельно. Первое знакомство с этой темой может показаться скучным и бессмысленным, но именно при помощи логарифмов решились многие проблемы математиков XVI века. "О чем это?" - подумали вы. Прочтите статью до конца и узнаете, что этот раздел "царицы наук" может быть интересен не только математикам, ученым точных наук, но и простым ученикам средних школ.

Определение логарифма

Начнем с определения логарифма. Как гласят многие учебники: логарифмом числа b по основанию a (logab) является некое число с, для которого выполняется такое равенство: b=ac. То есть, говоря простыми словами, логарифм - определенная степень, в которую возводим основание, чтобы получить данное число. Но важно помнить, что логарифм вида logab имеет смысл только при: a>0; a - число, отличное от 1; b>0, следовательно, делаем вывод, что логарифм можно найти только у положительных чисел.

Классификация логарифмов по основанию

Логарифмы могут быть с любым положительным числом в основании. Но также существует два вида: натуральный и десятичный логарифмы.

  • Натуральный логарифм - логарифм с основанием е (е - число Эйлера, численно приблизительно равняется 2,7, иррациональное число, которое ввели для показательной функции y = ex), обозначается как ln a = logea;
  • Десятичный логарифм - логарифм с основанием 10, то есть log10a = lg a.

Основные правила логарифмов

Для начала нужно познакомиться с основным логарифмическим тождеством: alogab=b, далее следуют два таких основных правила:

  • loga1 = 0 - так как любое число в нулевой степени равно 1;
  • logaa = 1.

Благодаря открытию логарифма для нас не составит труда решить абсолютно любое показательно уравнение, ответ которого нельзя выразить натуральным числом, а только иррациональным. Например: 5х = 9, х = log59 (так как натурального х для данного уравнения не существует).

Действия с логарифмами

  • loga(x · y) = logax+ logay - чтобы найти логарифм произведения, нужно сложить логарифмы сомножителей. Обратите внимание на то, что основания логарифмов одинаковы. Если записать это в обратном порядке, то получим правило сложения логарифмов.
  • loga xy = logax - logay - чтобы найти логарифм частного, нужно найти разность логарифмов делимого и делителя. Обратите внимание: основания у логарифмов одинаковы. При записи в обратном порядке получаем правило вычитания логарифмов.

  • logakxp = (p/k)*logax - таким образом, если в аргументе и основании логарифма стоят степени, то их можно выносить за знак логарифма.
  • logax = logac xc - частный случай предыдущего правила, когда показатели степеней равны, их можно сократить.
  • logax = (logbx)(logba) - так называемый модуль перехода, процедура приведения логарифма к другому основанию.
  • logax = 1/logxa - частный случай перехода, смена мест основания и данного числа. Все выражение, образно говоря, переворачивается, и логарифм с новым основанием оказывается в знаменателе.

История возникновения логарифмов

В XVI веке возникла необходимость проведения многих приближенных вычислений для решения практических задач, главным образом, в астрономии (например, определение положения судна по Солнцу или звездам).


Эта потребность быстро росла и значительную трудность создавало умножение и деление многозначных чисел. И ученый-математик Непер при тригонометрических расчетах решил заменить трудоемкое умножение на обыкновенное сложение, сопоставив для этого некоторые прогрессии. Тогда деление, аналогично, заменяется на процедуру попроще и надежнее - вычитание, а дабы извлечь корень n-ой степени, нужно разделить логарифм подкоренного выражения на n. Решение такой нелегкой задачи в математике явно отображало цели Непера в науке. Вот как он писал об этом в начале своей книги "Рабдология":

Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики.

Название логарифма предложил сам Непер, он был получен путем совмещения греческих слов, которые в сочетании означали “число отношений”.

Основание логарифма ввел Спейдел. Его заимствовал Эйлер из теории о степенях и перенес в теорию логарифмов. Понятие логарифмирования стало известным благодаря Коппе в XIX веке. А использование натуральных и десятичных логарифмов, а также их обозначения появились благодаря Коши.

В 1614 году Джон Непер издал на латыни сочинение "Описание удивительной таблица логарифмов". Там было изложено краткое описание логарифмов, правил и их свойств. Так термин "логарифм" утвердился в точных науках.

Операцию логарифмирования и первое упоминание о ней появилось благодаря Валлису и Иоганну Бернулли, а окончательно установлена она была Эйлером в XVIII веке.


Именно заслуга Эйлера в распространении логарифмической функции вида y = logax на комплексную область. В первой половине XVIII века вышла его книга "Введение в анализ бесконечных", где были современные определения показательной и логарифмической функций.

Логарифмическая функция

Функция вида y = logах (имеет смысл, только если: а > 0, а ≠ 1).

  • Логарифмическая функция определяется множеством всех положительных чисел, так как запись logах существует только при условии - х > 0;.
  • Данная функция может принимать абсолютно все значения из множества R (действительных чисел). Так как у всякого действительного числа b есть положительное x, чтобы выполнялось равенство logaх = b, то есть, это уравнение имеет корень - х = аb (следует из того, что logaab= b).
  • Функция возрастает на промежутке a>0, а убывает на промежутке 0Если а>0, то функция принимает положительные значения при х>1.

Следует помнить, что любые графики логарифмической функции у = logах имеют одну стационарную точку (1;0), так как logа 1 = 0. Это хорошо видно на иллюстрации графика ниже.


Как видим на изображениях, функция не имеет четности или нечетности, не имеет наибольших или наименьших значений, не ограничена сверху или снизу.

Логарифмическая функция y = logаx и показательная функция y = aх, где (а>0, а≠1), взаимно обратные. Это можно видеть на изображении их графиков.

Решение задач с логарифмами

Обычно решение задачи, содержащей логарифмы, основано на преобразовании их в стандартный вид или же направлено на упрощение выражений под знаком логарифма. Или же стоит переводить обычные натуральные числа в логарифмы с нужным основанием, проводить дальнейшие операции по упрощению выражения.

Есть некие тонкости, которые не стоит забывать:

  • При решении неравенств, когда обе части стоят под логарифмами по правилу с одним основанием, не спешите "отбрасывать" знак логарифма. Помните о промежутках монотонности логарифмической функции. Так как, если основание больше 1 (случай, когда функция возрастает) - знак неравенства останется без изменений, но когда основание больше 0 и меньше 1 (случай, когда функция убывает) - знак неравенства изменится на противоположный;
  • Не забывайте определения логарифма: logах = b, а>0, а≠1 и х>0, чтобы не потерять корней из-за неучтенной области допустимых значений. ОДЗ (область допустимых значений) существует практически для всех сложных функций.

Это банальные, но масштабные ошибки, с которыми столкнулись многие на пути поиска верного ответа для задания. Правил решения логарифмов не так уж и много, поэтому эта тема проще, чем другие и последующие, но в ней стоит хорошо разобраться.

Вывод


Данная тема с первого взгляда может показаться сложной и громоздкой, но, исследуя ее глубже и глубже, начинаешь понимать, что тема просто заканчивается, а сложностей так ничего и не вызвало. Мы рассмотрели все свойства, правила и даже ошибки, касающиеся темы логарифмов. Успехов в обучении!

Раздел логарифмов занимает огромное значение в школьном курсе «Математического анализа». Задания для логарифмических функций построены на иных принципах, нежели задачи для неравенств и уравнений. Знание определений и основных свойств понятий логарифм и логарифмическая функция, обеспечат успешное решение типовых задач ЕГЭ.

Прежде чем приступить к объяснению, что представляет собой логарифмическая функция, стоит обратиться к определению логарифма.

Разберем конкретный пример: а log a x = x, где a › 0, a ≠ 1.

Основные свойства логарифмов можно перечислить несколькими пунктами:

Логарифмирование

Логарифмированием называют математическую операцию, которая позволяет с помощью свойств понятия найти логарифм числа или выражения.

Примеры:

Функция логарифма и ее свойства

Логарифмическая функция имеет вид

Сразу отметим, что график функции может быть возрастающим при a › 1 и убывающим при 0 ‹ a ‹ 1. В зависимости от этого кривая функции будет иметь тот или иной вид.

Приведем свойства и способ построения графиков логарифмов:

  • область определения f(x) – множество всех положительных чисел, т.е. x может принимать любое значение из интервала (0; + ∞);
  • ОДЗ функции – множество всех действительных чисел, т.е. y может быть равен любому числу из промежутка (— ∞; +∞);
  • если основание логарифма а › 1, то f(x) возрастает на всей области определения;
  • если основание логарифма 0 ‹ a ‹ 1, то F – убывающая;
  • логарифмическая функция не является ни четной, ни нечетной;
  • кривая графика всегда проходит через точку с координатами (1;0).

Построить обе разновидности графиков очень просто, рассмотрим процесс на примере

Для начала необходимо вспомнить свойства простого логарифма и ее функции. С их помощью нужно построить таблицу для конкретных значений x и y. Затем на координатной оси следует отметить полученные точки и соединить их плавной линией. Эта кривая и будет являться требуемым графиком.

Логарифмическая функция является обратной для показательной функции, заданной формулой y= а x . Чтобы убедиться в этом, достаточно нарисовать обе кривые на одной координатной оси.

Очевидно, что обе линии являются зеркальным отражением друг друга. Построив прямую y = x, можно увидеть ось симметрии.

Для того, чтобы быстро найти ответ задачи нужно рассчитать значения точек для y = log 2⁡ x, а затем просто перенести начала точки координат на три деления вниз по оси OY и на 2 деления влево по оси OX.

В качестве доказательства построим расчетную таблицу для точек графика y = log 2 ⁡(x+2)-3 и сравним полученные значения с рисунком.

Как видно, координаты из таблицы и точек на графике совпадают, следовательно, перенос по осям был осуществлен правильно.

Примеры решения типовых задач ЕГЭ

Большую часть тестовых задач можно разделить на две части: поиск области определения, указания вида функции по рисунку графика, определение является ли функция возрастающей/убывающей.

Для быстрого ответа на задания необходимо четко уяснить, что f(x) возрастает, если показатель логарифма а › 1, а убывает – при 0 ‹ а ‹ 1. Однако, не только основание, но и аргумент может сильно повлиять на вид кривой функции.

F(x), отмеченные галочкой, являются правильными ответами. Сомнения в данном случае вызывают пример 2 и 3. Знак «-» перед log меняет возрастающую на убывающую и наоборот.

Поэтому график y=-log 3⁡ x убывает на всей области определения, а y= -log (1/3) ⁡x – возрастает, при том, что основание 0 ‹ a ‹ 1.

Ответ : 3,4,5.

Ответ : 4.

Данные типы заданий считаются легкими и оцениваются в 1- 2 балла.

Задание 3.

Определить убывающая или возрастающая ли функция и указать область ее определения.

Y = log 0.7 ⁡(0,1x-5)

Так как основание логарифма меньше единицы, но больше нуля – функция от x является убывающей. Согласно свойствам логарифма аргумент также должен быть больше нуля. Решим неравенство:

Ответ : область определения D(x) – интервал (50; + ∞).

Ответ : 3, 1, оси OX, направо.

Подобные задания классифицируются как средние и оцениваются в 3 — 4 балла.

Задание 5 . Найти область значений для функции:

Из свойств логарифма известно, что аргумент может быть только положительным. Поэтому рассчитаем область допустимых значений функции. Для этого нужно будет решить систему из двух неравенств.

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

По мере развития общества, усложнения производства развивалась и математика. Движение от простого к сложному. От обычного учёта методом сложения и вычитания, при их многократном повторении, пришли к понятию умножения и деления. Сокращение многократно повторяемой операции умножения стало понятием возведения в степень. Первые таблицы зависимости чисел от основания и числа возведения в степень были составлены ещё в VIII веке индийским математиком Варасена. С них и можно отсчитывать время возникновения логарифмов.

Исторический очерк

Возрождение Европы в XVI веке стимулировало и развитие механики. Требовался большой объем вычисления , связанных с умножением и делением многозначных чисел. Древние таблицы оказали большую услугу. Они позволяли заменять сложные операции на более простые – сложение и вычитание. Большим шагом вперёд стала работа математика Михаэля Штифеля, опубликованная в 1544 году, в которой он реализовал идею многих математиков. Что позволило использовать таблицы не только для степеней в виде простых чисел, но и для произвольных рациональных.

В 1614 году шотландец Джон Непер, развивая эти идеи, впервые ввёл новый термин «логарифм числа». Были составлены новые сложные таблицы для расчёта логарифмов синусов и косинусов, а также тангенсов. Это сильно сократило труд астрономов.

Стали появляться новые таблицы, которые успешно использовались учёными на протяжении трёх веков. Прошло немало времени, прежде чем новая операция в алгебре приобрела свой законченный вид. Было дано определение логарифма, и его свойства были изучены.

Только в XX веке с появлением калькулятора и компьютера человечество отказалось от древних таблиц, успешно работавших на протяжении XIII веков.

Сегодня мы называем логарифмом b по основанию a число x, которое является степенью числа а, чтобы получилось число b. В виде формулы это записывается: x = log a(b).

Например, log 3(9) будет равен 2. Это очевидно, если следовать определению. Если 3 возвести в степень 2, то получим 9.

Так, сформулированное определение ставит только одно ограничение, числа a и b должны быть вещественными.

Разновидности логарифмов

Классическое определение носит название вещественный логарифм и фактически является решением уравнения a x = b. Вариант a = 1 является пограничным и не представляет интереса. Внимание: 1 в любой степени равно 1.

Вещественное значение логарифма определено только при основании и аргументе больше 0, при этом основание не должно равняться 1.

Особое место в области математики играют логарифмы, которые будут называться в зависимости от величины их основания:

Правила и ограничения

Основополагающим свойством логарифмов является правило: логарифм произведения равен логарифмической сумме. log abp = lоg a(b) + log a(p).

Как вариант этого утверждения будет: log с(b/p) = lоg с(b) — log с(p), функция частного равна разности функций.

Из предыдущих двух правил легко видно, что: lоg a(b p) = p * log a(b).

Среди других свойств можно выделить:

Замечание. Не надо делать распространённую ошибку - логарифм суммы не равен сумме логарифмов.

Многие века операция поиска логарифма была довольно трудоёмкой задачей. Математики пользовались известной формулой логарифмической теории разложения на многочлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*((x^n)/n), где n - натуральное число больше 1, определяющее точность вычисления.

Логарифмы с другими основаниями вычислялись, используя теорему о переходе от одного основания к другому и свойстве логарифма произведения.

Так как этот способ очень трудоёмкий и при решении практических задач трудноосуществим, то использовали заранее составленные таблицы логарифмов, что значительно ускоряло всю работу.

В некоторых случаях использовали специально составленные графики логарифмов, что давало меньшую точность, но значительно ускоряло поиск нужного значения. Кривая функции y = log a(x), построенная по нескольким точкам, позволяет с помощью обычной линейки находить значения функции в любой другой точке. Инженеры длительное время для этих целей использовали так называемую миллиметровую бумагу.

В XVII веке появились первые вспомогательные аналоговые вычислительные условия, которые к XIX веку приобрели законченный вид. Наиболее удачное устройство получило название логарифмическая линейка. При всей простоте устройства, её появление значительно ускорило процесс всех инженерных расчётов, и это переоценить трудно. В настоящее время уже мало кто знаком с этим устройством.

Появление калькуляторов и компьютеров сделало бессмысленным использование любых других устройств.

Уравнения и неравенства

Для решения различных уравнений и неравенств с использованием логарифмов применяются следующие формулы:

  • Переход от одного основания к другому: lоg a(b) = log c(b) / log c(a);
  • Как следствие предыдущего варианта: lоg a(b) = 1 / log b(a).

Для решения неравенств полезно знать:

  • Значение логарифма будет положительным только в том случае, когда основание и аргумент одновременно больше или меньше единицы; если хотя бы одно условие нарушено, значение логарифма будет отрицательным.
  • Если функция логарифма применяется к правой и левой части неравенства, и основание логарифма больше единицы, то знак неравенства сохраняется; в противном случае он меняется.

Примеры задач

Рассмотрим несколько вариантов применения логарифмов и их свойства. Примеры с решением уравнений:

Рассмотрим вариант размещения логарифма в степени:

  • Задача 3. Вычислить 25^log 5(3). Решение: в условиях задачи запись аналогична следующей (5^2)^log5(3) или 5^(2 * log 5(3)). Запишем по-другому: 5^log 5(3*2), или квадрат числа в качестве аргумента функции можно записать как квадрат самой функции (5^log 5(3))^2. Используя свойства логарифмов, это выражение равно 3^2. Ответ: в результате вычисления получаем 9.

Практическое применение

Являясь исключительно математическим инструментом, кажется далёким от реальной жизни, что логарифм неожиданно приобрёл большое значение для описания объектов реального мира. Трудно найти науку, где его не применяют. Это в полной мере относится не только к естественным, но и гуманитарным областям знаний.

Логарифмические зависимости

Приведём несколько примеров числовых зависимостей:

Механика и физика

Исторически механика и физика всегда развивались с использованием математических методов исследования и одновременно служили стимулом для развития математики, в том числе логарифмов. Теория большинства законов физики написана языком математики. Приведём только два примера описания физических законов с использованием логарифма.

Решать задачу расчёта такой сложной величины как скорость ракеты можно, применяя формулу Циолковского, которая положила начало теории освоения космоса:

V = I * ln (M1/M2), где

  • V – конечная скорость летательного аппарата.
  • I – удельный импульс двигателя.
  • M 1 – начальная масса ракеты.
  • M 2 – конечная масса.

Другой важный пример - это использование в формуле другого великого учёного Макса Планка, которая служит для оценки равновесного состояния в термодинамике.

S = k * ln (Ω), где

  • S – термодинамическое свойство.
  • k – постоянная Больцмана.
  • Ω – статистический вес разных состояний.

Химия

Менее очевидным будет использования формул в химии, содержащих отношение логарифмов. Приведём тоже только два примера:

  • Уравнение Нернста, условие окислительно-восстановительного потенциала среды по отношению к активности веществ и константой равновесия.
  • Расчёт таких констант, как показатель автопролиза и кислотность раствора тоже не обходятся без нашей функции.

Психология и биология

И уж совсем непонятно при чём здесь психология. Оказывается, сила ощущения хорошо описывается этой функцией как обратное отношение значения интенсивности раздражителя к нижнему значению интенсивности.

После вышеприведённых примеров уже не удивляет, что и в биологии широко используется тема логарифмов. Про биологические формы, соответствующие логарифмическим спиралям, можно писать целые тома.

Другие области

Кажется, невозможно существование мира без связи с этой функцией, и она правит всеми законами. Особенно, когда законы природы связаны с геометрической прогрессией. Стоит обратиться к сайту МатПрофи, и таких примеров найдётся множество в следующих сферах деятельности:

Список может быть бесконечным. Освоив основные закономерности этой функции, можно окунуться в мир бесконечной мудрости.