Взаимодействие цинка с солями. Общие характеристики цинка, его реакции с разбавленной и концентрированной серной кислотой

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 вместо предполагаемой формулы 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 . Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления +1 и +2. Степень окисления +1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu 2 O и т. д., а также в комплексных соединениях, например, Cl и OH. Соединения меди в степени окисления +1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы), CuCl и CuI — белыe, а Cu 2 S — черно-синий. Более химически устойчивой является степень окисления меди, равная +2. Соли, содержащие медь в данной степени окисления, имеют синюю и сине-зеленую окраску.

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

с кислородом

В обычных условиях медь с кислородом не взаимодействует. Для протекания реакции между ними требуется нагрев. В зависимости от избытка или недостатка кислорода и температурных условий может образовать оксид меди (II) и оксид меди (I):

с серой

Реакция серы с медью в зависимости от условий проведения может приводить к образованию как сульфида меди (I), так и сульфида меди (II). При нагревании смеси порошкообразных Cu и S до температуры 300-400 о С образуется сульфид меди (I):

При недостатке серы и проведении реакции при температуре более 400 о С образуется сульфид меди (II). Однако, более простым способом получения сульфида меди (II) из простых веществ является взаимодействие меди с серой, растворенной в сероуглероде:

Данная реакция протекает при комнатной температуре.

с галогенами

С фтором, хлором и бромом медь реагирует, образуя галогениды с общей формулой CuHal 2 , где Hal – F, Cl или Br:

Cu + Br 2 = CuBr 2

В случае с йодом — самым слабым окислителем среди галогенов — образуется иодид меди (I):

С водородом, азотом, углеродом и кремнием медь не взаимодействует.

с кислотами-неокислителями

Кислотами-неокислителями являются практически все кислоты, кроме концентрированной серной кислоты и азотной кислоты любой концентрации. Поскольку кислоты-неокислители в состоянии окислить только металлы, находящиеся в ряду активности до водорода; это означает, что медь с такими кислотами не реагирует.

с кислотами-окислителями

— концентрированной серной кислотой

С концентрированной серной кислотой медь реагирует как при нагревании, так и при комнатной температуре. При нагревании реакция протекает в соответствии с уравнением:

Поскольку медь не является сильным восстановителем, сера восстанавливается в данной реакции только до степени окисления +4 (в SO 2).

— с разбавленной азотной кислотой

Реакция меди с разбавленной HNO 3 приводит к образованию нитрата меди (II) и монооксида азота:

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O

— с концентрированной азотной кислотой

Концентрированная HNO 3 легко реагирует с медью при обычных условиях. Отличие реакции меди с концентрированной азотной кислотой от взаимодействия с разбавленной азотной кислотой заключается в продукте восстановления азота. В случае концентрированной HNO 3 азот восстанавливается в меньшей степени: вместо оксида азота (II) образуется оксид азота (IV), что связано с большей конкуренцией между молекулами азотной кислоты в концентрированной кислоте за электроны восстановителя (Cu):

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

с оксидами неметаллов

Медь реагирует с некоторыми оксидами неметаллов. Например, с такими оксидами, как NO 2 , NO, N 2 O медь окисляется до оксида меди (II), а азот восстанавливается до степени окисления 0, т.е. образуется простое вещество N 2:

В случае диоксида серы, вместо простого вещества (серы) образуется сульфид меди(I). Связано это с тем, что медь с серой, в отличие от азота, реагирует:

с оксидами металлов

При спекании металлической меди с оксидом меди (II) при температуре 1000-2000 о С может быть получен оксид меди (I):

Также металлическая медь может восстановить при прокаливании оксид железа (III) до оксида железа (II):

с солями металлов

Медь вытесняет менее активные металлы (правее нее в ряду активности) из растворов их солей:

Cu + 2AgNO 3 = Cu(NO 3) 2 + 2Ag↓

Также имеет место интересная реакция, в которой медь растворяется в соли более активного металла – железа в степени окисления +3. Однако противоречий нет, т.к. медь не вытесняет железо из его соли, а лишь восстанавливает его со степени окисления +3 до степени окисления +2:

Fe 2 (SO 4) 3 + Cu = CuSO 4 + 2FeSO 4

Cu + 2FeCl 3 = CuCl 2 + 2FeCl 2

Последняя реакция используется при производстве микросхем на стадии травления медных плат.

Коррозия меди

Медь со временем подвергается коррозии при контакте с влагой, углекислым газом и кислородом воздуха:

2Cu + H 2 O + СО 2 + О 2 = (CuOН) 2 СO 3

В результате протекания данной реакции медные изделия покрываются рыхлым сине-зеленым налетом гидроксокарбоната меди (II).

Химические свойства цинка

Цинк Zn находится в IIБ группе IV-го периода. Электронная конфигурация валентных орбиталей атомов химического элемента в основном состоянии 3d 10 4s 2 . Для цинка возможна только одна единственная степень окисления, равная +2. Оксид цинка ZnO и гидроксид цинка Zn(ОН) 2 обладают ярко выраженными амфотерными свойствами.

Цинк при хранении на воздухе тускнеет, покрываясь тонким слоем оксида ZnO. Особенно легко окисление протекает при высокой влажности и в присутствии углекислого газа вследствие протекания реакции:

2Zn + H 2 O + O 2 + CO 2 → Zn 2 (OH) 2 CO 3

Пар цинка горит на воздухе, а тонкая полоска цинка после накаливания в пламени горелки сгорает в нем зеленоватым пламенем:

При нагревании металлический цинк также взаимодействует с галогенами, серой, фосфором:

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует.

Цинк реагирует с кислотами-неокислителями с выделением водорода:

Zn + H 2 SO 4 (20%) → ZnSO 4 + H 2

Zn + 2HCl → ZnCl 2 + H 2

Особенно легко растворяется в кислотах технический цинк, поскольку содержит в себе примеси других менее активных металлов, в частности, кадмия и меди. Высокочистый цинк по определенным причинам устойчив к воздействию кислот. Для того чтобы ускорить реакцию, образец цинка высокой степени чистоты приводят в соприкосновение с медью или добавляют в раствор кислоты немного соли меди.

При температуре 800-900 o C (красное каление) металлический цинк, находясь в расплавленном состоянии, взаимодействует с перегретым водяным паром, выделяя из него водород:

Zn + H 2 O = ZnO + H 2

Цинк реагирует также и с кислотами-окислителями: серной концентрированной и азотной.

Цинк как активный металл может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу и даже сероводород.

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O

Состав продуктов восстановления азотной кислоты определяется концентрацией раствора:

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

3Zn + 8HNO 3 (40%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O

4Zn +10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O

5Zn + 12HNO 3 (6%) = 5Zn(NO 3) 2 + N 2 + 6H 2 O

4Zn + 10HNO 3 (0,5%) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

На направление протекания процесса влияют также температура, количество кислоты, чистота металла, время проведения реакции.
Цинк реагирует с растворами щелочей, при этом образуются тетрагидроксоцинкаты и водород:

Zn + 2NaOH + 2H 2 O = Na 2 + H 2

Zn + Ba(OH) 2 + 2H 2 O = Ba + H 2

С безводными щелочами цинк при сплавлении образует цинкаты и водород:

В сильнощелочной среде цинк является крайне сильным восстановителем, способным восстанавливать азот в нитратах и нитритах до аммиака:

4Zn + NaNO 3 + 7NaOH + 6H 2 O → 4Na 2 + NH 3

Благодаря комплексообразованию цинк медленно растворяется в растворе аммиака, восстанавливая водород:

Zn + 4NH 3 ·H 2 O → (OH) 2 + H 2 + 2H 2 O

Также цинк восстанавливает менее активные металлы (правее него в ряду активности) из водных растворов их солей:

Zn + CuCl 2 = Cu + ZnCl 2

Zn + FeSO 4 = Fe + ZnSO 4

Химические свойства хрома

Хром - элемент VIB группы таблицы Менделеева. Электронная конфигурация атома хрома записывается как 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 , т.е. в случае хрома, также как и в случае атома меди, наблюдается так называемый «проскок электрона»

Наиболее часто проявляемыми степенями окисления хрома являются значения +2, +3 и +6. Их следует запомнить, и в рамках программы ЕГЭ по химии можно считать, что других степеней окисления хром не имеет.

При обычных условиях хром устойчив к коррозии как на воздухе, так и в воде.

Взаимодействие с неметаллами

с кислородом

Раскаленный до температуры более 600 o С порошкообразный металлический хром сгорает в чистом кислороде образуя окcид хрома (III):

4Cr + 3O 2 = o t => 2Cr 2 O 3

с галогенами

С хлором и фтором хром реагирует при более низких температурах, чем с кислородом (250 и 300 o C соответственно):

2Cr + 3F 2 = o t => 2CrF 3

2Cr + 3Cl 2 = o t => 2CrCl 3

С бромом же хром реагирует при температуре красного каления (850-900 o C):

2Cr + 3Br 2 = o t => 2CrBr 3

с азотом

С азотом металлический хром взаимодействует при температурах более 1000 o С:

2Cr + N 2 = o t => 2CrN

с серой

С серой хром может образовывать как сульфид хрома (II) так и сульфид хрома (III), что зависит от пропорций серы и хрома:

Cr + S = o t => CrS

2Cr + 3S = o t => Cr 2 S 3

С водородом хром не реагирует.

Взаимодействие со сложными веществами

Взаимодействие с водой

Хром относится к металлам средней активности (расположен в ряду активности металлов между алюминием и водородом). Это означает, что реакция протекает между раскаленным до красного каления хромом и перегретым водяным паром:

2Cr + 3H 2 O = o t => Cr 2 O 3 + 3H 2

Взаимодействие с кислотами

Хром при обычных условиях пассивируется концентрированными серной и азотной кислотами, однако, растворяется в них при кипячении, при этом окисляясь до степени окисления +3:

Cr + 6HNO 3(конц.) =t o => Cr(NO 3) 3 + 3NO 2 + 3H 2 O

2Cr + 6H 2 SO 4(конц) =t o => Cr 2 (SO 4) 3 + 3SO 2 + 6H 2 O

В случае разбавленной азотной кислоты основным продуктом восстановления азота является простое вещество N 2:

10Cr + 36HNO 3(разб) = 10Cr(NO 3) 3 + 3N 2 + 18H 2 O

Хром расположен в ряду активности левее водорода, а это значит, что он способен выделять H 2 из растворов кислот-неокислителей. В ходе таких реакций в отсутствие доступа кислорода воздуха образуются соли хрома (II):

Cr + 2HCl = CrCl 2 + H 2

Cr + H 2 SO 4(разб.) = CrSO 4 + H 2

При проведении же реакции на открытом воздухе, двухвалентный хром мгновенно окисляется содержащимся в воздухе кислородом до степени окисления +3. При этом, например, уравнение с соляной кислотой примет вид:

4Cr + 12HCl + 3O 2 = 4CrCl 3 + 6H 2 O

При сплавлении металлического хрома с сильными окислителями в присутствии щелочей хром окисляется до степени окисления +6, образуя хроматы :

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26 Fe1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 , то есть железо относится к d-элементам, поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH) 2 преобладают основные свойства, у оксида Fe 2 O 3 и гидроксида Fe(OH) 3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей, а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H 2 FeO 4 . Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах. При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду, выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину , имеющую формулу Fe 3 O 4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe 2 O 3 . Реакция горения железа имеет вид:

3Fe + 2O 2 =t o => Fe 3 O 4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =t o => FeS

Либо же при избытке серы дисульфид железа :

Fe + 2S =t o => FeS 2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F 2 =t o => 2FeF 3 – фторид железа (lll)

2Fe + 3Cl 2 =t o => 2FeCl 3 – хлорид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I 2 =t o => FeI 2 – йодид железа (ll)

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

Взаимодействие с кислотами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H 2 SO 4 (конц.) и HNO 3 любой концентрации):

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2

Fe + 2HCl = FeCl 2 + H 2

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях.

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

Взаимодействие с кислотами-окислителями

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H 2 SO 4 = o t => Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Fe + 6HNO 3 = o t => Fe(NO 3) 3 + 3NO 2 + 3H 2 O

Обратите внимание на то, что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3.

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H 2 O + 3O 2 = 4Fe(OH) 3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 о С). т.е.:

Одним из металлов, которые были открыты достаточно давно, но и по сей день не потеряли своей актуальности в использовании благодаря замечательным своим свойствам, является цинк. Его физические и химические свойства позволяют применять материал в самых разных отраслях техники и быта. Он оказывает существенное влияние и на здоровье человека.

Краткая история открытия элемента

Что такое цинк, люди знали еще до нашей эры. Ведь именно тогда научились применять сплавы, содержащие этот металл. Египтяне использовали руды, содержащие медь и цинк, сплавляли их и получали очень прочный, устойчивый к окислению материал. Были найдены предметы быта, посуда, выполненные из этого материала.

Название zinc встречается в трудах врача Парацельса в XVI веке нашей эры. В этот же период металл активно начинают использовать китайцы, отливая из него монеты. Постепенно знания об этом веществе и его хороших технических свойствах переходят в Европу. Тогда и в Германии, Англии также узнали, что такое цинк и где его можно использовать.

Латунь была одним из первых и самых известных сплавов, используемых еще с древних веков на Кипре, а позже в Германии и других странах.

Название происходит от латинского zincum, однако этимология не совсем ясна. Есть несколько версий.

  1. От немецкого zinke, что переводится как "острие".
  2. От латинского zincum, что означает "белый налет".
  3. Персидский "ченг", то есть камень.
  4. Древнегерманский zinco, что переводится, как "налет", "бельмо на глазу".

Сегодняшнее название элемент получил только в начале XX века. О значении ионов цинка в организме человека также стало известно лишь сравнительно недавно (XX век). До этого никакие недуги с этим элементом не связывали.

Однако известно, что уже в древности многие народы использовали супы из мяса молодого барашка как средство восстановления после болезни и для скорейшей поправки. Сегодня можно сказать, что эффект достигался за счет ионов цинка, которых в этом блюде содержится достаточно много. Он помогал восстановлению кровообращения, снятию усталости и активизировал мозговую деятельность.

Элемент Цинк: характеристика

Данный элемент располагается в периодической системе во второй группе, побочной подгруппе. Порядковый номер 30, масса Цинка - 65,37. Единственная и постоянная степень окисления +2. Электронная конфигурация внешнего слоя атома 4s 2 .

В таблице Цинк, Медь, Кадмий, Хром, Марганец и многие другие - это переходные металлы. К ним относятся все те, у которых электроны заполняют внешний и предвнешний d и f энергетические подуровни.

Соли цинка

Практически все соли, которые не являются двойными и комплексными, то есть не содержат посторонних окрашенных ионов, - это бесцветные Самыми популярными в плане использования человеком являются следующие из них.

  1. Хлорид цинка - ZnCL 2. Другое название соединения - паяльная кислота. Внешне представляет собой белые кристаллики, хорошо впитывающие влагу воздуха. Используется для очищения поверхности металлов перед пайкой, получения фибры, в батарейках, для пропитки дерева перед обработкой в качестве дезинфектора.
  2. Сульфид цинка. Белый порошок, быстро желтеющий при нагревании. Имеет высокую температуру плавления, в отличие от чистого металла. Используется при производстве люминесцирующих составов, наносимых на экраны, панели и прочие предметы. Является полупроводником.
  3. - распространенная отрава, применяемая для избавления от грызущих животных (мышей, крыс).
  4. Смитсонит, или карбонат цинка - ZnCO 3 . Бесцветное кристаллическое соединение, нерастворимое в воде. Применяется в нефтехимическом производстве, а также в реакциях получения шелка. Является катализатором в органических синтезах, используется в качестве удобрения для почв.
  5. Ацетат цинка - (CH 3 COO) 2 Zn. Бесцветные кристаллы, хорошо растворимые во всех растворителях любой природы. Находит широкое применение как в химической, так и в медицинской и пищевой промышленности. Используется для лечения нозафарингита. Применяется в качестве пищевой добавки Е650 - освежает дыхание, предупреждает появление налета на зубах, когда входит в состав жвачки. Его же используют для протравливания красителей, консервации древесины, производства пластмасс и прочих органических синтезах. Практически везде играет роль ингибитора.
  6. Йодид цинка - белые кристаллы, используемые в рентгенографии, в качестве электролита в аккумуляторах, как краситель для электронных микроисследований.
  7. Черные или темно-зеленые кристаллы, которые невозможно получить прямым синтезом, так как цинк с азотом не реагирует. Образуются из аммиаката металла. При высоких температурах разлагается с высвобождением цинка, поэтому применяется для его получения.
  8. Нитрат цинка. Бесцветные гигроскопичные кристаллы. Применение цинка в таком виде осуществляется в текстильной и кожевенной промышленностях для протравки тканей.

Сплавы цинка

Как уже упоминалось выше, существует самый распространенный сплав цинка - латунь. Именно он известен с самой древности и активно используется людьми до сих пор. Что же он собой представляет?

Латунь - это медь и цинк, которые гармонично сочетаются с несколькими другими металлами, придающими дополнительный блеск, прочность и тугоплавкость сплаву. Цинк в составе как легирующий элемент, медь - как основной. Цвет материала желтый, блестящий, однако на открытом воздухе во влажной среде способен чернеть. Температура плавления около 950 о С, может варьироваться в зависимости от содержания цинка (чем больше его, тем температура ниже).

Материал хорошо прокатывается в листы, трубы, сваривается контактным способом. Имеет хорошие технические характеристики, поэтому из него изготавливаются следующие элементы:.

  1. Детали машин и различные технические приборы.
  2. Гильзы и штампованные изделия.
  3. Гайки, болты, патрубки.
  4. Арматуры, втулки, антикоррозийные детали разных видов транспорта.
  5. Детали часов.

Большая часть добываемого в мире рассматриваемого нами металла уходит именно на изготовление данного сплава.

Еще один вид интерметаллического соединения - антимонид цинка. Формула его Zn 4 Sb 3. Это также сплав, который используется как полупроводник в транзисторах, тепловизорах, магниторезистивных устройствах.

Очевидно, что применение цинка и его соединений очень широко и практически повсеместно. Данный металл так же популярен, как медь и алюминий, серебро и золото, марганец и железо. Особенно велико его значение в технических целях как антикоррозионного материала. Ведь именно цинком покрываются разные сплавы и изделия для защиты от этого разрушающего природного процесса.

Биологическая роль

Что такое цинк с точки зрения медицины и биологии? Имеет ли он значение для жизни организмов и насколько оно велико? Оказывается, ионы цинка просто обязательно должны присутствовать в живых существах. Иначе дефицит приведет к следующим последствиям:

  • анемии;
  • снижению инсулина;
  • аллергии;
  • потере веса и памяти;
  • утомляемости;
  • депрессии;
  • ухудшению зрения;
  • раздражительности и другим.

Основные места концентрации ионов цинка в организме человека - это печень и мышцы. Также именно этот металл входит в состав большинства ферментов (например, карбоангидраза). Поэтому большинство реакций катализа происходит при участии цинка.

Что именно делают ионы?

  1. Участвуют в синтезе мужских гормонов и семенной жидкости.
  2. Способствуют усвоению витамина Е.
  3. Участвуют в расщеплении молекул алкоголя в организме.
  4. Являются непосредственными участниками синтеза многих гормонов (инсулина, гормона роста, тестостерона и других).
  5. Принимает участие в кроветворении и заживлении поврежденных тканей.
  6. Регулирует секрецию сальных желез, поддерживает нормальный рост волос и ногтей, способствует регенерационным процессам в коже.
  7. Обладает способностью устранять из организма токсины и укреплять иммунитет.
  8. Влияет на формирование вкусовых ощущений, а также обоняния.
  9. Принимает участие в процессах транскрипции, обмене витамина А, нуклеиновых синтезах и распадах.
  10. Является участником всех стадий роста и развития клетки, а также сопровождает процесс экспрессии гена.

Все это еще раз доказывает, насколько важным элементом является данный металл. Роль его в биологических системах была выяснена только в XX веке. Многих неприятностей и недугов в прошлом можно было бы избежать, если бы люди знали о лечении при помощи препаратов на основе цинка.

Каким же образом можно поддерживать нужное количество этого элемента в организме? Ответ очевиден. Необходимо употреблять продукты, содержащие цинк. Список может быть длинным, поэтому укажем только те, в которых максимальное количество рассматриваемого элемента:

  • орехи и семечки;
  • бобовые;
  • мясо;
  • морепродукты, особенно, устрицы;
  • злаки и хлеб;
  • молочная продукция;
  • зелень, овощи и фрукты.

Использование человеком

Мы уже в целом обозначали, в каких отраслях и областях промышленности используется цинк. Цена на этот металл и его сплавы достаточно высока. Например, лист латуни размером 0,6 х 1,5 приблизительно оценивают в 260 рублей. И это вполне оправданно, ведь качество материала достаточно высокое.

Итак, металлический цинк, то есть как простое вещество, используется:

  • для покрытия против коррозии на железных и стальных изделиях;
  • в аккумуляторах;
  • типографии;
  • в качестве восстановителя и катализатора в органических синтезах;
  • в металлургии для выделения других металлов из их растворов.

Используется не только в косметических целях, о которых мы уже упоминали, но и в качестве наполнителя при производстве резины, как белый пигмент в красках.

О том, где используются различные соли цинка, мы говорили при рассмотрении этих соединений. Очевидно, что в целом цинк и его вещества - это важные и значимые в промышленности, медицине и других отраслях компоненты, без которых многие процессы оказались бы невозможными или сильно затрудненными.

Цинк - элемент периодической системы 2 подгруппы 4 периода с атомным номером 30 и атомным весом 65,39.

Хрупкий переходный метал цинк.

  • Прямое влияние на химические свойства цинка оказывает его отношение к блоку d-элементов. Данная группа образует химические связи только внешними электронами d-орбитали. Поэтому элемент имеет характерную степень окисления +2 и схожесть со свойствами магния.
  • Гексагональная решетка цинка была описана еще в Швейцарии в XVI веке и упоминалась как «кристалловидные иглы». Металл переходного типа в своих разновидностях имеет множество изотопов. Самый стабильный из радиоактивных — 65 zn с периодом полураспада в 245 суток.
  • Металлический цинк в обычных условиях - это хрупкое вещество. Его плотность составляет 7,13 г/см³. На свету присущий всем металлам блеск отливает голубовато-серым цветом. Температура плавления начинается от 46 °C, а температура кипения - от 906 °C. Проявляя амфотерные свойства, элемент уступает по активности только щелочноземельным металлам. Окислительно-восстановительный потенциал равен 0,76 B.

    Цинк является коррозиестойким металлом. В интервале водородного показателя кислотности pH 9–11 наблюдается максимальная устойчивость. В атмосферных условиях коррозия не протекает из-за появления на поверхности защитной пленки - оксида цинка. Коррозия будет проходить с применением водородной или кислородной деполяризации.

Роль в металлургии

Гидро- и пирометаллургический процессы - наиболее распространенные способы производства металлического цинка из руды. В своих свойствах ничем не уступает хрому в качестве антикоррозионного покрытия. Половина всего производимого цинка затрачивается именно для нанесения защитного слоя для железа и стали.

Антикоррозийное применение цинка.

За счет низкой температуры плавления цинка и его сплавов с другими металлами появляется проблема чувствительности к перегреву. Поэтому чрезмерный перегрев в производстве вызывает нарушение процесса с последующим окислением сплава. Наиболее распространенными считаются сплавы с медью (латунь), а также со свинцом. Их повсеместно используют в технике, щелочных аккумуляторах, гальванических элементах и сплавах с другими благородными металлами.

Характеристика свойств элемента меняется под влиянием примесей. К примеру: тройная эвтектика сплава свинца и цинка с примесью олова плавится гораздо легче самого цинка и разрушается под горячим давлением. Добавление в состав цинка всего 0,2% железа в несколько раз повышает его хрупкость. Труднорастворимые в элементе висмут и мышьяк вообще отрицательно сказываются на технологических характеристиках получаемого вещества.

В промышленности восстанавливающие свойства элемента имеют важную функцию. Он принимает участие в осаждении золота из растворов, в производстве гидросульфита, добыче из руды меди и кадмия.

Реакции с элементами


Взаимодействие с кислотами

Хорошая реакция цинка с большинством кислот обусловлена его положением по отношению к водороду в электрохимическом ряду активности металлов. Так образуется множество важных цинковых солей. Эти соли преимущественно бесцветные, представляют гигроскопичные кристаллы, растворы которых вследствие гидролиза имеют кислотную среду. В случае с солями других металлов он будет также вытеснять их из раствора, если они стоят в ряду напряжения правее от элемента.

При взаимодействии с кислотами образуются соли цинка.

В растворе элемента с серной кислотой при температуре ниже 38 °C образуется цинковый купорос, научное название которого сульфат ZnSO4. Его используют в производстве вискозы, некоторых отраслях металлургии, в медицине как обеззараживающее средство. Хлорид ZnCl2 получают из раствора соляной кислоты с цинком. Его используют в производстве батареек, антисептической пропитке дерева и бумажной фибры.

Производные соединения

  1. Цинк и его амфотерные свойства передаются гидроксидам цинка Zn (OH)2. Этим веществам присуще химическое поведение кислот и оснований одновременно. Получить гидроксид в виде белого осадка можно действием щелочи на сульфат. В естественном состоянии гидроксид - это кристалловидное вещество, разлагающееся при температуре свыше 130 °C. Применяется для синтеза солей цинка.
  2. Эффектным можно назвать старый способ добычи оксида ZnO, именуемый ранее как «французский процесс». В присутствии сильно нагретого воздуха вокруг пластины элемента начнут выделяться пары цинка, которые затем воспламеняются голубоватым светом, образуя оксид. На крупном производстве его добывают из природного минерала цинкита. Кроме того, для производства оксида широко применяют термическое разложение более сложных соединений, как, например, гидроксида.
  3. Бесцветный белый порошок оксида, не растворяющийся в воде, выражает свою химическую двойственность. При сплавлении оксида цинка со щелочами получают цинкаты. При сплавлении с оксидами - силикаты. Собственная теплопроводность позволяет ему быть полупроводником, ширина запрещенной зоны которого равна 3,36 эВ. Оксид имеет широкий спектр применения в химической промышленности, став наполнителем многих пластмасс. В электронике без него не обходится ни одна лучевая трубка телевизора. Он также входит в состав большинства дерматологических мазей.

Цинк (лат. Zincum), Zn, химический элемент II группы периодической системы Менделеева; атомный номер 30, атомная масса 65,38, синевато-белый металл. Известно 5 стабильных изотопов с массовыми числами 64, 66, 67, 68 и 70; наиболее распространен 64 Zn (48,89%). Искусственно получен ряд радиоактивных изотопов, среди которых наиболее долгоживущий 65 Zn с периодом полураспада Т ½ = 245 сут; применяется как изотопный индикатор.

Историческая справка. Сплав Цинка с медью - латунь - был известен еще древним грекам и египтянам. Чистый Цинк долгое время не удавалось выделить. В 1746 году А. С. Маргграф разработал способ получения металла прокаливанием смеси его оксида с углем без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров Цинка в холодильниках. В промышленном масштабе выплавка Цинка началась в 17 веке.

Распространение Цинка в природе. Среднее содержание Цинк в земной коре (кларк) - 8,3·10 -3 % по массе, в основных изверженных породах его несколько больше (1,3·10 -2 %), чем в кислых (6·10 -3 %). Известно 66 минералов Цинка, важнейшие из них - цинкит, сфалерит, виллемит, каламин, смитсонит, франк-линит ZnFe 2 O 4 . Цинк - энергичный водный мигрант; особенно характерна его миграция в термальных водах вместе с Рb; из этих вод осаждаются сульфиды Цинка, имеющие важное промышленное значение. Цинк также энергично мигрирует в поверхностных и подземных водах; главным осадителем для него является H 2 S, меньшую роль играет сорбция глинами и другие процессы. Цинк - важный биогенный элемент; в живом веществе содержится в среднем 5·10 -4 % Цинка, но имеются и организмы-концентраторы (например, некоторые фиалки).

Физические свойства Цинка. Цинк - металл средней твердости. В холодном состоянии хрупок, а при 100-150 °С весьма пластичен и легко прокатывается в листы и фольгу толщиной около сотых долей миллиметра. При 250 °С вновь становится хрупким. Полиморфных модификаций не имеет. Кристаллизуется в гексагональной решетке с параметрами а = 2,6594Å, с = 4,9370Å. Атомный радиус 1,37Å; ионный Zn 2+ -0,83Å. Плотность твердого Цинка 7,133 г/см 3 (20 °С), жидкого 6,66 г/см 3 (419,5 °С); t пл 419,5 °С; t кип 906 °С. Температурный коэффициент линейного расширения 39,7·10 -3 (20-250 °С), коэффициент теплопроводности 110,950 вт/(м ·К) 0,265 кал/см·сек·°С (20 °С), удельное электросопротивление 5,9·10 -6 ом·см (20 °С), удельная теплоемкость Цинка 25,433 кдж/(кг·К.) . Предел прочности при растяжении 200-250 Мн/м 2 (2000-2500 кгс/см 2), относительное удлинение 40-50%, твердость по Бринеллю 400-500 Мн/м 2 (4000-5000 кгс/см 2). Цинк диамагнитен, его удельная магнитная восприимчивость -0,175·10 -6 .

Химические свойства Цинка. Внешняя электронная конфигурация атома Zn 3d 10 4s 2 . Степень окисления в соединениях +2. Нормальный окислительно-восстановительный потенциал, равный 0,76 в, характеризует Цинк как активный металл и энергичный восстановитель. На воздухе при температуре до 100 °С Цинк быстро тускнеет, покрываясь поверхностной пленкой основных карбонатов. Во влажном воздухе, особенно в присутствии СО 2 , происходит разрушение металла даже при обычных температурах. При сильном нагревании на воздухе или в кислороде Цинк интенсивно сгорает голубоватым пламенем с образованием белого дыма оксида цинка ZnO. Сухие фтор, хлор и бром не взаимодействуют с Цинком на холоду, но в присутствии паров воды металл может воспламениться, образуя, например, ZnCl 2 . Нагретая смесь порошка Цинка с серой дает сульфид Цинк ZnS. Сульфид Цинк выпадает в осадок при действии сероводорода на слабокислые или аммиачные водные растворы солей Zn. Гидрид ZnH 2 получается при взаимодействии LiАlН 4 с Zn(CH 3) 2 и других соединениями Цинка; металлоподобное вещество, разлагающееся при нагревании на элементы. Нитрид Zn 3 N 2 - черный порошок, образуется при нагревании до 600 °С в токе аммиака; на воздухе устойчив до 750 °С, вода его разлагает. Карбид Цинка ZnC 2 получен при нагревании Цинка в токе ацетилена. Сильные минеральные кислоты энергично растворяют Цинк, особенно при нагревании, с образованием соответствующих солей. При взаимодействии с разбавленной НCl и H 2 SO 4 выделяется Н 2 , а с НNО 3 - кроме того, NO, NO 2 , NH 3 . С концентрированной НCl, H 2 SO 4 и HNO 3 Цинк реагирует, выделяя соответственно Н 2 , SO 2 , NO и NO 2 . Растворы и расплавы щелочей окисляют Цинк с выделением Н 2 и образованием растворимых в воде цинкитов. Интенсивность действия кислот и щелочей на Цинк зависит от наличия в нем примесей. Чистый Цинк менее реакционноспособен по отношению к этим реагентам из-за высокого перенапряжения на нем водорода. В воде соли Цинка при нагревании гидролизуются, выделяя белый осадок гидрооксида Zn(OH) 2 . Известны комплексные соединения, содержащие Цинк, например SО 4 и другие.

Получение Цинка. Цинк добывают из полиметаллических руд, содержащих 1-4% Zn в виде сульфида, а также Cu, Pb, Ag, Аu, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60% Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид Цинка в оксид ZnO; образующийся при этом сернистый газ SO 2 расходуется на производство серной кислоты. От ZnO к Zn идут двумя путями. По пирометаллургическому (дистилляционному) способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200-1300 °С: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем - шахтные и дуговые электропечи; из свинцово-цинковых концентратов Цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но Цинк содержал до 3% примесей, в т. ч. ценный кадмий. Дистилляционный Цинк очищают ликвацией (т. е. отстаиванием жидкого металла от железа и части свинца при 500 °С), достигая чистоты 98,7%. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995% и позволяет извлекать кадмий.

Основной способ получения Цинка - электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного Цинка 99,95%, полнота извлечения его из концентрата (при учете переработки отходов) 93-94% . Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.

Применение Цинка. Около половины производимого Цинк расходуется на защиту стали от коррозии (Цинкование). Поскольку Цинк в ряду напряжений стоит до железа, то при попадании оцинкованного железа в коррозионную среду разрушению подвергается Цинк. Благодаря хорошим литейным качествам и низкой температуре плавления из Цинк отливают под давлением различные мелкие детали самолетов и других машин. Сплавы меди с Цинком - латунь, нейзильбер, а также Цинка со свинцом и других металлами широко применяются в технике. Цинк дает с золотом и серебром интерметаллиды (нерастворимые в жидком свинце) и поэтому Цинк применяется для рафинирования свинца от благородных металлов. В виде порошка Цинк служит восстановителем в ряде химико-технологических процессов: в производстве гидросульфита, при осаждении золота из промышленного цианистых растворов, меди и кадмия при очистке растворов цинкового купороса и других. Многие соединения Цинка являются люминофорами, например, три основных цвета на экране кинескопа зависят от ZnS·Ag (синий цвет), ZnSe·Ag (зеленый цвет) и Zn 3 (PO 4) 2 ·Mn (красный цвет). Важными полупроводниковыми материалами служат соединения Цинка типа A II B VI - ZnS, ZnSe, ZnTe, ZnO. Наиболее распространенные химические источники тока имеют в качестве отрицательного электрода Цинк.

Цинк в организме. Цинк как один из биогенных элементов постоянно присутствует в тканях растений и животных. Среднее содержание Цинка в большинстве наземных и морских организмов - тысячные доли процента. Богаты Цинком грибы, особенно ядовитые, лишайники, хвойные растения и некоторые беспозвоночные морские животные, например, устрицы (0,4% сухой массы). В зонах повышенных содержаний Цинка в горных породах встречаются концентрирующие Цинк так называемых галмейные растения. В организм растений Цинк поступает из почвы и воды, животных - с пищей. Суточная потребность человека в Цинке (5-20 мг) покрывается за счет хлебопродуктов, мяса, молока, овощей; у грудных детей потребность в Цинке (4-6 мг) удовлетворяется за счет грудного молока.

Биологическая роль Цинк связана с его участием в ферментативных реакциях, протекающих в клетках. Он входит в состав важнейших ферментов: карбоангидразы, различных дегидрогеназ, фосфатаз, связанных с дыханием и другими физиологическими процессами, протеиназ и пептидаз, участвующих в белковом обмене, ферментов нуклеинового обмена (РНК- и ДНК-по-лимераз) и других. Цинк играет существенную роль в синтезе молекул информационной РНК на соответствующих участках ДНК (транскрипция), в стабилизации рибосом и биополимеров (РНК, ДНК, некоторые белки).

В растениях наряду с участием в дыхании, белковом и нуклеиновом обменах Цинк регулирует рост, влияет на образование аминокислоты триптофана, повышает содержание гиббереллинов. Цинк стабилизирует макромолекулы различных биологических мембран и может быть их интегральной частью, влияет на транспорт ионов, участвует в надмолекулярной организации клеточных органелл. В присутствии Цинка в культуре Ustilago sphaerogena формируется большее число митохондрий, при недостатке Цинка у Euglena gracilis исчезают рибосомы. Цинк необходим для развития яйцеклетки и зародыша (в его отсутствии не образуются семена). Он повышает засухо-, жаро- и холодостойкость растений. Недостаток Цинка ведет к нарушению деления клеток, различным функциональным болезням - побелению верхушек кукурузы, розеточности растений и других. У животных, помимо участия в дыхании и нуклеиновом обмене, Цинк повышает деятельность половых желез, влияет на формирование скелета плода. Показано, что недостаток Цинка у грудных крыс уменьшает содержание РНК и синтез белка в мозге, замедляет развитие мозга. Из слюны околоушной железы человека выделен цинксодержащий белок; предполагается, что он стимулирует регенерацию клеток вкусовых луковиц языка и поддерживает их вкусовую функцию. Цинк играет защитную роль в организме при загрязнении среды кадмием.

Дефицит Цинк в организме ведет к карликовости, задержке полового развития; при его избыточном поступлении в организм возможны (по экспериментальным данным) канцерогенное влияние и токсическое действие на сердце, кровь, гонады и др. Производственные вредности могут быть связаны с неблагоприятным воздействием на организм как металлического Цинка, так и его соединений. При плавке цинкосодержащих сплавов возможны случаи литейной лихорадки. Препараты Цинка в виде растворов (сульфат Цинка) и в составе присыпок, паст, мазей, свечей (окись Цинка) применяют в медицине как вяжущие и дезинфицирующие средства.

Элемент цинк (Zn) в таблице Менделеева имеет порядковый номер 30. Он находится в четвертом периоде второй группы. Атомный вес - 65,37. Распределение электронов по слоям 2-8-18-2.

30 элемент таблицы Менделеева Цинк представляет собой синевато - белый металл, плавящийся при 419(С, а при 913 (С превращающийся в пар; плотность его равна 7,14 г/см3. При обыкновенной температуре цинк довольно хрупок, но при 100-110(С он хорошо гнется и прокатывается в листы. На воздухе цинк покрывается тонким слоем окиси или основного карбоната, предохраняющим его от дальнейшего окисления. Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно левее водорода. Это объясняется тем, что образующаяся на поверхности цинка при взаимодействии его с водой гидроокись практически нерастворима и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей. Кроме того, цинк подобно бериллию и другим металлам, образующим амфотерные гидроокиси, растворяется в щелочах. Если нагреть цинк на воздухе до температуры кипения, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя окись цинка.

Среднее содержание цинка в земной коре — 8,3·10-3%, в основных извержённых породах его несколько больше (1,3·10-2%), чем в кислых (6·10-3%). Цинк — энергичный водный мигрант, особенно характерна его миграция в термальных водах вместе со свинцом. Из этих вод осаждаются сульфиды цинка, имеющие важное промышленное значение. Цинк также энергично мигрирует в поверхностных и подземных водах, главным осадителем для него является сероводород, меньшую роль играет сорбция глинами и другие процессы.
Цинк — важный биогенный элемент, в живых организмах содержится в среднем 5·10-4% цинка. Но есть и исключения — так называемые организмы-концентраторы (например, некоторые фиалки).

Месторождения цинка

Месторождения цинка известны в Иране, Австралии, Боливии, Казахстане. В России крупнейшим производителем свинцово-цинковых концентратов является ОАО «ГМК Дальполиметалл»

Получение цинка

Цинк в природе как самородный металл не встречается.
Цинк добывают из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. Чистый цинк из оксида ZnO получают двумя способами. По пирометаллургическому (дистилляционному) способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200—1300 °C: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий.

Основной способ получения цинка — электролитический (гидрометаллургический). Обожжённые концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата (при учете переработки отходов) 93-94 %. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.

Биологическая роль

В организме взрослого человека содержится в среднем около 2г цинка, который концентрируется преимущественно в мышцах, печени и поджелудочной железе. Более 400 ферментов содержат цинк. Среди них ферменты, катализирующие гидролиз пептидов, белков и сложных эфиров, образование альдегидов, полимеризацию ДНК и РНК. Ионы Zn2+ в составе ферментов вызывают поляризацию молекул воды и органических веществ, содействуя их депротонированию по реакции:

Zn2+ + H2O = ZnOH+ + H+
Наиболее изучен фермент карбоангидраза - белок, содержащий цинк и состоящий примерно из 260 аминокислотных остатков. Этот фермент содержится в эритроцитах крови и способствует превращению углекислого газа, образующегося в тканях в процессе их жизнедеятельности, в гидрокарбонат-ионы и угольную кислоту, которая кровью переносится в легкие, где выводится из организма в виде углекислого газа. В отсутствие фермента превращение СО2 в анион HCO3- протекает с очень низкой скоростью. В молекуле карбоангидразы атом цинка связан с тремя имидазольными группами остатков аминокислоты гистидина и молекулой воды, которая легко депротонируется, превращаясь в координированный гидроксид. Атом углерода молекулы углекислого газа, на котором находится частичный положительный заряд, вступает во взаимодействие с атомом кислорода гидроксильной группы. Таким образом, координированная молекула СО2 превращается в гидрокарбонат-анион, который покидает активный центр фермента, замещаясь на молекулу воды. Фермент ускоряет эту реакцию гидролиза в 10 миллионов раз.

Применение цинка

Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа.
Применяется для защиты стали от коррозии (оцинковка поверхностей, не подверженных механическим воздействиям, или металлизация — для мостов, емкостей, металлоконструкций).
Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах, например: марганцево-цинковый элемент, серебряно-цинковый аккумулятор (ЭДС 1,85 В, 150 Вт·ч/кг, 650 Вт·ч/дм³, малое сопротивление и колоссальные разрядные токи), ртутно-цинковый элемент (ЭДС 1,35 В, 135 Вт·ч/кг, 550—650 Вт·ч/дм³), диоксисульфатно-ртутный элемент, иодатно-цинковый элемент, медно-окисный гальванический элемент (ЭДС 0,7—1,6 Вольт, 84—127 Вт·ч/кг, 410—570 Вт·ч/дм³), хром-цинковый элемент, цинк-хлоросеребряный элемент, никель-цинковый аккумулятор (ЭДС 1,82 Вольт, 95—118 Вт·ч/кг, 230—295 Вт·ч/дм³), свинцово-цинковый элемент, цинк-хлорный аккумулятор, цинк-бромный аккумулятор и др.

Очень важна роль цинка в цинк-воздушных аккумуляторах, которые отличаются весьма высокой удельной энергоёмкостью. Они перспективны для пуска двигателей (свинцовый аккумулятор — 55 Вт·ч/кг, цинк-воздух — 220—300 Вт·ч/кг) и для электромобилей (пробег до 900 км).

Пластины цинка широко используется в полиграфии, в частности, для печати иллюстраций в многотиражных изданиях. Для этого с XIX века применяется цинкография — изготовление клише на цинковой пластине при помощи вытравливания кислотой рисунка в ней. Примеси, за исключением небольшого количества свинца, ухудшают процесс травления. Перед травлением цинковую пластину подвергают отжигу и прокатывают в нагретом состоянии.
Цинк вводится в состав многих твёрдых припоев для снижения их температуры плавления.
Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски — цинковых белил.

Цинк — важный компонент латуни. Сплавы цинка с алюминием и магнием (ЦАМ, ZAMAK) благодаря сравнительно высоким механическим и очень высоким литейным качествам очень широко используются в машиностроении для точного литья. В частности, в оружейном деле из сплава ZAMAK (-3, −5) иногда отливают затворы пистолетов, особенно рассчитанных на использование слабых или травматических патронов. Также из цинковых сплавов отливают всевозможную техническую фурнитуру, вроде автомобильных ручек, корпусы карбюраторов, масштабные модели и всевозможные миниатюры, а также любые другие изделия, требующие точного литья при приемлемой прочности.

Хлорид цинка — важный флюс для пайки металлов и компонент при производстве фибры.
Сульфид цинка используется при изготовлении люминофоров краткого послесвечения и других люминесцирующих составов, обычно, это смеси ZnS и CdS, активированные ионами других металлов. Люминофоры на базе сульфидов цинка и кадмия, также применяются в электронной промышленности для изготовления светящихся гибких панелей и экранов в качестве электролюминофоров и составов с коротким временем высвечивания.
Теллурид, селенид, фосфид, сульфид цинка — широко применяемые полупроводники. Сульфид цинка — составная часть многих люминофоров. Фосфид цинка используется в качестве отравы для грызунов.
Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.

На разные применения цинка приходится:

цинкование — 45-60 %
медицина (оксид цинка как антисептик) — 10 %
производство сплавов — 10 %
производство резиновых шин — 10 %
масляные краски — 10 %