Сечение шара плоскостью. Сечение шара

Ключевые слова: шар, сфера, центр шара, диаметр, касательная плоскость, плоскость симметрии,

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки.

Эта точка называется центром шара, а данное расстояние называется радиусом шара. Граница шара называется шаровой поверхностью или сферой. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально-противоположными точками шара. Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенного в эту точку, называется касательной плоскостью . Данная точка называется точкой касания. Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.

Теорема 20.3 . Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость .

Доказательство. Пусть - секущая плоскость и О - центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость и обозначим через О" основание этого перпендикуляра.

Пусть X - произвольная точка шара, принадлежащая плоскости. По теореме Пифагора 0X2 = 00"2+О"Х2. Так как ОХ не больше радиуса R шара, то, т. е. любая точка сечения шара плоскостью находится от точки О" на расстоянии, не большем, следовательно, она принадлежит кругу с центром О" и радиусом.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О". Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы - большой окружностью.

Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?

Решение . Если радиус шара R (рис. 455), то радиус круга в сечении будет

Отношение площади этого круга к площади большого круга равно

Или сферой . Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом . Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром . Концы любого диаметра называются диаметрально противоположными точками шара. Всякое сечение шара плоскостью есть круг . Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью . Сечение шара диаметральной плоскостью называется большим кругом , а сечение сферы - большой окружностью . Любая диаметральная плоскость шара являются его плоскостью симметрии . Центр шара является его центром симметрии . Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенному в эту точку, называется касательной плоскостью . Данная точка называется точкой касания . Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной . Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара. Шаровым сегментом называется часть шара, отсекаемая от него плоскостью. Шаровым слоем называется часть шара, расположенная между двумя параллельными плоскостями, пересекающими шар. Шаровой сектор получается из шарового сегмента и конуса. Если шаровой сегмент меньше полушара, то шаровой сегмент дополняется конусом, у которого вершина в центре шара, а основанием является основание сегмента. Если же сегмент больше полушара, то указанный конус из него удаляется. Основные формулы Шар (R = ОВ - радиус): S б = 4πR 2 ; V = 4πR 3 / 3. Шаровой сегмент (R = ОВ - радиус шара, h = СК - высота сегмента, r = КВ - радиус основания сегмента): V сегм = πh 2 (R - h / 3) или V сегм = πh(h 2 + 3r 2) / 6 ; S сегм = 2πRh . Шаровой сектор (R = ОВ - радиус шара, h = СК - высота сегмента): V = V сегм ± V кон, «+» - если сегмент меньше,«-» - если сегмент больше полусферы. или V = V сегм + V кон = πh 2 (R - h / 3) + πr 2 (R - h) / 3 . Шаровой слой (R 1 и R 2 - радиусы оснований шарового слоя; h = СК - высота шарового слоя или расстояние между основаниями): V ш/сл = πh 3 / 6 + πh(R 1 2 + R 2 2 ) / 2 ; S ш/сл = 2πRh . Пример 1. Объем шара равен 288π см 3 . Найти диаметр шара. Решение V = πd 3 / 6 288π = πd 3 / 6 πd 3 = 1728π d 3 = 1728 d = 12 см. Ответ: 12. Пример 2. Три равных сферы радиусом r касаются друг друга и некоторой плоскости. Определить радиус четвертой сферы, касающейся трех данных и данной плоскости. Решение Пусть О 1 , О 2 , О 3 - центры данных сфер и О - центр четвертой сферы, касающейся трех данных и данной плоскости. Пусть А, В, С, Т - точки касания сфер с данной плоскостью. Точки касания двух сфер лежат на линии центров этих сфер, поэтому О 1 О 2 = О 2 О 3 = О 3 О 1 = 2r . Точки равноудалены от плоскости АВС , поэтому АВО 2 О 1 , АВО 2 О 3 , АВО 3 О 1 - равные прямоугольники, следовательно, ∆АВС - равносторонний со стороной 2r . Пусть х - искомый радиус четвертой сферы. Тогда ОТ = х . Следовательно, Аналогично Значит, Т - центр равностороннего треугольника. Поэтому Отсюда Ответ: r / 3 . Сфера, вписанная в пирамиду В каждую правильную пирамиду можно вписать сферу. Центр сферы лежит на высоте пирамиды в точке ее пересечения с биссектрисой линейного угла при ребре основания пирамиды. Замечание. Если в пирамиду, необязательно правильную, можно вписать сферу, то радиус r этой сферы можно вычислить по формуле r = 3V / S пп , где V - объем пирамиды, S пп - площадь ее полной поверхности. Пример 3. Коническая воронка, радиус основания которой R , а высота H , наполнена водой. В воронку опущен тяжелый шар. Каким должен быть радиус шара, чтобы объем воды, вытесненный из воронки погруженной частью шара, был максимальным? Решение Проведем сечение через центр конуса. Данное сечение образует равнобедренный треугольник. Если в воронке находится шар, то максимальный размер его радиуса будет равен радиусу вписанной в получившийся равнобедренный треугольник окружности. Радиус вписанной в треугольник окружности равен: r = S / p , где S - площадь треугольника, p - его полупериметр. Площадь равнобедренного треугольника равна половине высоты (H = SO ), умноженной на основание. Но поскольку основание - удвоенный радиус конуса, то S = RH . Полупериметр равен p = 1/2 (2R + 2m) = R + m . m - длина каждой из равных сторон равнобедренного треугольника; R - радиус окружности, составляющей основание конуса. Найдем m по теореме Пифагора: , откуда Кратко это выглядит следующим образом: Ответ: Пример 4. В правильной треугольной пирамиде с двугранным углом при основании, равным α , расположены два шара. Первый шар касается всех граней пирамиды, а второй шар касается всех боковых граней пирамиды и первого шара. Найти отношение радиуса первого шара к радиусу второго шара, если tgα = 24/7 . Решение
Пусть РАВС - правильная пирамида и точка Н - центр ее основания АВС . Пусть М - середина ребра ВС . Тогда - линейный угол двугранного угла , который по условию равен α , причем α < 90° . Центр первого шара, касающегося всех граней пирамиды, лежит на отрезке РН в точке его пересечения с биссектрисой . Пусть НН 1 - диаметр первого шара и плоскость, проходящая через точку Н 1 перпендикулярно прямой РН , пересекает боковые ребра РА, РВ, РС соответственно в точках А 1 , В 1 , С 1 . Тогда Н 1 будет центром правильного ∆А 1 В 1 С 1 , а пирамида РА 1 В 1 С 1 будет подобна пирамиде РАВС с коэффициентом подобия k = РН 1 / РН . Заметим, что второй шар, с центром в точке О 1 , является вписанным в пирамиду РА 1 В 1 С 1 и поэтому отношение радиусов вписанных шаров равно коэффициенту подобия: ОН / ОН 1 = РН / РН 1 . Из равенства tgα = 24/7 находим: Пусть АВ = х . Тогда Отсюда искомое отношение ОН / О 1 Н 1 = 16/9. Ответ: 16/9. Сфера, вписанная в призму Диаметр D сферы, вписанной в призму, равен высоте Н призмы: D = 2R = H . Радиус R сферы, вписанной в призму, равен радиусу окружности, вписанной в перпендикулярное сечение призмы. Если в прямую призму вписана сфера, то в основание этой призмы можно вписать окружность. Радиус R сферы, вписанной в прямую призму, равен радиусу окружности, вписанной в основание призмы. Теорема 1 Пусть в основание прямой призмы можно вписать окружность, и высота Н призмы равна диаметру D этой окружности. Тогда в эту призму можно вписать сферу диаметром D . Центр этой вписанной сферы совпадает с серединой отрезка, соединяющего центры окружностей, вписанных в основания призмы. Доказательство Пусть АВС…А 1 В 1 С 1 … - прямая призма и О - центр окружности, вписанной в ее основание АВС . Тогда точка О равноудалена от всех сторон основания АВС . Пусть О 1 - ортогональная проекция точки О на основание А 1 В 1 С 1 . Тогда О 1 равноудалена от всех сторон основания А 1 В 1 С 1 , и ОО 1 || АА 1 . Отсюда следует, что прямая ОО 1 параллельна каждой плоскости боковой грани призмы, а длина отрезка ОО 1 равна высоте призмы и, по условию, диаметру окружности, вписанной в основание призмы. Значит, точки отрезка ОО 1 равноудалены от боковых граней призмы, а середина F отрезка ОО 1 , равноудаленная от плоскостей оснований призмы, будет равноудалена от всех граней призмы. То есть F - центр сферы, вписанной в призму, и диаметр этой сферы равен диаметру окружности, вписанной в основание призмы. Теорема доказана. Теорема 2 Пусть в перпендикулярное сечение наклонной призмы можно вписать окружность, и высота призмы равна диаметру этой окружности. Тогда в эту наклонную призму можно вписать сферу. Центр этой сферы делит высоту, проходящую через центр окружности, вписанной в перпендикулярное сечение, пополам. Доказательство
Пусть АВС…А 1 В 1 С 1 … - наклонная призма и F - центр окружности радиусом FK , вписанной в ее перпендикулярное сечение. Поскольку перпендикулярное сечение призмы перпендикулярно каждой плоскости ее боковой грани, то радиусы окружности, вписанной в перпендикулярное сечение, проведенные к сторонам этого сечения, являются перпендикулярами к боковым граням призмы. Следовательно, точка F равноудалена от всех боковых граней. Проведем через точку F прямую ОО 1 , перпендикулярную плоскости оснований призмы, пересекающую эти основания в точках О и О 1 . Тогда ОО 1 - высота призмы. Поскольку по условию ОО 1 = 2FK , то F - середина отрезка ОО 1 : FK = ОО 1 / 2 = FО = FО 1 , т.е. точка F равноудалена от плоскостей всех без исключения граней призмы. Значит, в данную призму можно вписать сферу, центр которой совпадает с точкой F - центром окружности, вписанной в то перпендикулярное сечение призмы, которое делит высоту призмы, проходящую через точку F , пополам. Теорема доказана. Пример 5. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда. Решение Нарисуйте вид сверху. Или сбоку. Или спереди. Вы увидите одно и то же - круг, вписанный в прямоугольник. Очевидно, этот прямоугольник будет квадратом, а параллелепипед будет кубом. Длина, ширина и высота этого куба в два раза больше, чем радиус шара. АВ = 2 , а следовательно, объем куба равен 8. Ответ: 8. Пример 6. В правильной треугольной призме со стороной основания, равной , расположены два шара. Первый шар вписан в призму, а второй шар касается одного основания призмы, двух ее боковых граней и первого шара. Найти радиус второго шара. Решение
Пусть АВСА 1 В 1 С 1 - правильная призма и точки Р и Р 1 - центры ее оснований. Тогда центр шара О , вписанного в эту призму, является серединой отрезка РР 1 . Рассмотрим плоскость РВВ 1 . Поскольку призма правильная, то РВ лежит на отрезке BN , который является биссектрисой и высотой ΔАВС . Следовательно, плоскость и является биссекторной плоскостью двугранного угла при боковом ребре ВВ 1 . Поэтому любая точка этой плоскости равноудалена от боковых граней АА 1 ВВ 1 и СС 1 В 1 В . В частности, перпендикуляр ОК , опущенный из точки О на грань АСС 1 А 1 , лежит в плоскости РВВ 1 и равен отрезку ОР . Заметим, что KNPO - квадрат, сторона которого равна радиусу шара, вписанного в данную призму. Пусть О 1 - центр шара, касающегося вписанного шара с центром О и боковых граней АА 1 ВВ 1 и СС 1 В 1 В призмы. Тогда точка О 1 лежит плоскости РВВ 1 , а ее проекция Р 2 на плоскость АВС лежит на отрезке РВ . По условию сторона основания равна

Плоскость пересекает сферу всегда по окружности, которая может проецироваться на плоскость в виде эллипса ,окружности илиотрезка прямой линии (рис. 70).


Сечение сферы проецирующей плоскостью Ω П 2

Окружность сечения проецируется на фронтальную плоскость в отрезок прямой линии С 2 D 2 , а на горизонтальную плоскость проекций в эллипс, большая ось которого равна диаметру окружности сечения.

Для построения большой оси А 1 В 1 (горизонтальной проекции, определяем середину отрезкаС 2 D 2 , через точку (А 2 В 2) проводится параллель, находят горизонтальную проекцию этой параллели и по линиям связи определяют на ней точки осиА 1 иВ 1.

Точки 1 и 1, расположенные на экваторе, являются границей видимости на П 1 . Точки 2 и 2, расположенные на главном меридиане, являются границей видимости на П 3 .

Лекция № 6 аксонометрические проекции

1. Общие сведения. 2. Показатели искажения. 3. Виды аксонометрических проекций. 4. Построение окружности в аксонометрии.

1 Общие сведения

При выполнении технических чертежей часто бывает необходимым иметь более наглядные изображения предметов. Для построения таких изображений применяют аксонометрические проекции (аксонометрию).

Аксонометрия – греческое слово, сос­тоящее из двух слов ахсо n ось и metreo измеряю .

Способ аксонометрического проецирования состоит в том, что предмет вместе с осями коор­динат, к которым он отнесен в пространстве, проецируется на какую-либо плос­кость параллельными лучами. Эта плоскость называется плоскостью аксонометрических проекций или картинной плоскостью (рис. 71).

Направление проецирования не должно совпадать ни с одной из осей координат, тогда и изображение получается наглядным.

Кроме наглядности аксонометрические проекции допускают и измерение предмета по трем координатным направлениям.

Построение изображения предмета выполняется по каркасу характерных для предмета точек с учетом свойств параллельного проецирования: параллельные прямые остаются на аксонометрических проекциях параллельными, точки, принадлежащие линиям, на проекциях принадлежат аксонометрическим проекциям этих линий. Все измерения делаются только по осям или параллельно осям.Характерные точки строятся по координатам.

К – аксонометрическая (картинная) плоскость;

S – направление проецирования.

2 Показатели искажения

Для возможности использования метода координат в аксонометрии вводятся показатели искажения по осям.

На рис. 72 изображена пространственная система координат, единичные отрезки е на осях координат и их проекция в направлении S на некоторую плоскость К , являющуюся аксонометрической плос­костью проекций. Проекции е х , е у , e z отрезка е на соответствующих аксонометрических осях в общем случае не равны отрезкуе и не равны между собой. Отрезкие х , е у , e z являютсяединицами измерения по аксонометрическим осям - аксоно­метрическими единицами (аксонометрическими масштабами).

Отношение длинны отреза в аксонометрических проекциях к истинной длине отрезка называют показателем искажения (коэффициентом искажения):

.

Зная величину коэффициента искажения можно построить аксонометрическое изображение точки по ее натуральным координатам, пользуясь следующими формулами:

Х 1 = К х Х; У 1 = К у У;

Z 1 = К z Z .

Показатели искажения связаны между собой соотношениями:

в прямоугольной аксонометрии:

К х 2 К у 2 К z 2 = 2,

в косоугольной аксонометрии:

К х 2 К у 2 К z 2 = 2 с tg 2 .

Представляет плоскую кривую - окружность, принадлежащую секущей плоскости.
Построить сечение сферы плоскостью общего положения β

Так как секущая плоскость общего положения, то эта окружность проецируется на плоскости проекций в виде эллипсов. Для построения эллипса необходимо знать размеры эллипса по его осям большой и малой.
Для тел вращения, к каковым относят цилиндр, конус и сферу, линия сечения может быть построена с характерными точками кривой к которым относятся:
- точки в которых меняется знак видимости;
- точки в которых ее координаты принимают максимальные и минимальные значения:
- x max ; x min ;
- y max ; y min ;
- z max ; z min ;
Использование характерных точек позволяет выполнить более точное построение линии пересечения поверхности вращения и плоскости.

Решение задачи на сечение сферы плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость β из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости β и проекцию шара. На следе плоскости β V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след. Линия сечения шара - точки A" 1 , B" 1 совпадает здесь со следом плоскости. Далее на фронтальной плоскости проекций V 1 построим центр окружности сечения - точку C" 1 которую получим восстановив перпендикуляр из центра шара (точка 0" 1 ) к [A" 1 B" 1 ] на их пересечении. Далее включаем обратное проецирование: через точки A" 1 , B" 1 и C" 1 проводим горизонтали h принадлежащие плоскости β , и на плоскости проекций H через центр шара проводим вспомогательную горизонтально-проецирующую плоскость γ 1 . Горизонтальный след плоскости γ 1 пресечет проекцию горизонтали h и определит в этом месте точку C` - центра окружности сечения. Горизонталь h` пересекает проекцию шара в точках D` и E` , определяя тем самым действительную величину отрезка [DE ] - большой оси эллипса. Аналогично строятся точки A` и B` , определяющие величину отрезка [A`B` ] - малой оси эллипса.

Проекции большой и малой оси эллипса на горизонтальную плоскость проекции H найдены, а это означает что эллипс - проекция окружности сечения на H может быть построен, смотри статью: Окружность

Повторим те же действия на для фронтальной плоскости проекций V и построим другой эллипс - проекцию окружности сечения на V .

Для нахождения точек указывающих границы видимости горизонтальной проекции окружности сечения

проводим через центр шара фронтально-проецирующую плоскость γ 2 V β по горизонтали h(h`, h") . Линия h` пересекается с горизонтальной проекцией окружности сечения по точкам 5,6 указывающим границу видимости. Точки окружности сечения расположенные на фронтальной проекции ниже следа плоскости γ 2 , на горизонтальной плоскости проекции H 5`, 6` ] - и будут на ней невидимы.

Для нахождения точек указывающих границы видимости фронтальной проекции окружности сечения. Проводим через центр шара горизонтально-проецирующую плоскость γ 1 H , которая пересечет плоскость β по фронтали f(f`, f") . Линия f" пересекается с фронтальной проекцией окружности сечения по точкам 7", 8" указывающим границу видимости. Точки окружности сечения расположенные на горизонтальной проекции выше следа плоскости γ 1 , на фронтальной плоскости проекции V будут располагаться слева от отрезка [7", 8" ] - и будут на ней невидимы.

Шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.

Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.

Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из - перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом - радиус окружности сечения.

Из трех сторон этого треугольника заданы два - радиус шара R и расстояние b, то есть гипотенуза . По теореме Пифагора длина второго катета должна быть равна √(R^2 - b^2). Это и есть радиус окружности сечения. Подставляя найденное значение в формулу площади круга, легко к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 - b^2).В частных случаях, когда b = R или b = 0, выведенная полностью согласуется с уже найденными результатами.

Видео по теме

Источники:

  • сечение шара плоскостью

Все планеты солнечной системы имеют форму шара . Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара . Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара , и ее окружность. От шара она отличается тем, что является полой. Ось как у шара , так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.

Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара , и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара , может проходить бесконечное количество кругов или окружностей. Именно по этой причине через