Применение спектрального анализа в изучении вселенной. Эковью методы спектрального анализа в астрономии

Спектральный анализ в астрономии находит себе применение, главным образом, в определении химического состава и физического состояния небесных светил и в определении их движения по лучу зрения, т. е. вдоль прямой, соединяющей землю и светило (см. Допплера явление). В первом случае применяются основные законы спектрального анализа; спектры источника света бывают трех видов:1) сплошной, когда источник света есть твердое или жидкое тело, каким-либо путем доведенное до свечения, или также и газообразное, особенно смесь газов, если давление его достаточно велико; сплошного спектра в последнем случае на земле не получено, но на возможность его указывают опыты, при которых линии спектра некоторых веществ расширялись при повышении давления газа, испускающего свет; 2) линейчатый спектр излучения, состоящий из большего или меньшего количества ярких линий (каждая линия есть изображение щели спектрального аппарата в отдельном цвете определенной длины волны); он получается, если источник света есть газ, каким-либо путем доведенный до свечения: опытами до сих пор не найдено двух различных газов, которые давали бы одинаковый спектр; на этом основана возможность по линейчатому спектру излучения определять химический состав того газа или смеси тех газов, от которых исходит свет; с другой стороны, опыты же показали, что у некоторых газов спектр бывает не один, а несколько, и что это зависит от способа, каким газ доведен до свечения; возможно, предполагать, что эта зависимость касается всех газов, но еще не у всех она обнаружена опытами. Далеко не во всех таких случаях определенно установлено, какие причины влияют на изменение спектра. Обычно их приписывают различию температуры, различию энергии, с которой в том или другом процессе (нагревание, прохождение электрического тока) совершается испускание света атомами газа: подмечено, например, что у некоторых газов без коренного изменения расположения светлых линий в их спектрах относительная яркость отдельных линий меняется по мере того, как, например, изменяется мощность электрического разряда, которым газ доводится до свечения; притом яркость некоторых линий увеличивается с увеличением мощности разряда, у других же линий она при этом уменьшается; подобное же изменение яркости некоторых линий наблюдается при сравнении спектров, полученных путем нагревания паров подходящих металлов при повышении температуры от 1 ½ до 2 ½ тысяч градусов. Результаты этих исследований применяются иногда в астрономии для суждения об условиях, при которых на небесных телах находятся различные светящиеся газы; однако, применение их не вполне уверенно, так как сомнительно, чтоб условия свечения газов на небесных светилах вполне соответствовали тем ограниченным техническим приемам, которыми до сих пор возможно пользоваться в земных лабораториях. Здесь открывается широкое поле для дальнейших опытов и теоретических исследований; 3) третий вид спектров, спектр поглощения, получается, когда свет от источника света, дающего непрерывный спектр, прежде чем попасть в щель спектрального прибора, проходит через слой газов, в частном случае светящихся. Тогда в спектре обычно появляются темные линии в тех самых местах, в которых эти газы при самосвечении дают светлые линии. Таким образом, по этим темным линиям возможно определить природу газов, через которые проходит свет. Но не всегда прохождение света через газы вызывает заметные линии поглощения; и, далее, относительная напряженность линий поглощения не вполне соответствует относительной яркости ярких линий тех же газов. Резкий пример: гелий впервые открыт на солнце по светлой линии его в спектре хромосферы, но темной линии гелия в обычном спектре солнца нет. Поэтому из отсутствия темных линий какого-либо газа в спектре небесного тела нельзя еще заключать об отсутствии или малом количестве этого газа в его атмосфере; физические условия могут быть таковы, что он не может проявить себя заметным поглощением света. Как во многих других случаях, достоверны лишь положительные, а не отрицательные свидетельства. Путем применения этих основных законов спектрального анализа был обнаружен состав различных небесных тел или их частей (см. солнце, звезды, кометы, туманности).

Влияние различных других факторов на место в спектре и вид спектральных линий, обнаруженное при исследованиях в земных лабораториях, также находит себе применение в астрономии; например, изменение длины волны линий в зависимости от давления газа дает возможность приблизительно судить о давлении атмосфер на небесных светилах в предположении, что здесь не дают знать себя какие-либо другие причины. Влияние магнитного поля на спектр газа, проходящего в нем (см. Земаново явление), также нашло себе применение в астрономии; путем исследования поляризации темных линий в спектре солнечных пятен было обнаружено магнитное доле в них, а затем и вообще магнитное поле солнца. Определение движения по лучу зрения на основании явления Допплера (см.) находит себе обширное применение, в особенности в различных вопросах, касающихся звезд и солнца (см. звезды, XXI, 34, 35, 38; солнце).

В конце XIX века теоретическими и экспериментальными исследованиями были установлены законы излучения (см.) т. н. абсолютно черного тела; была определена зависимость количества излучаемой телом энергии от его температуры и распределение энергии по различным частям спектра, длинам волн. Применение найденных при этом законов к спектрам небесных светил позволило, конечно, в случае самосветящихся, т. е. солнца и звезд, определить, хотя бы приблизительно, температуры их излучающих поверхностей.

Наконец, в недавнее время спектральный анализ нашел себе особое применение в астрономии, именно к определению расстояний звезд от солнца. Чисто геометрическим методом (см. звезды, XXI, 27) постепенно были определены расстояния нескольких сотен звезд от солнца; кроме того, были определены и их видимые, кажущиеся яркости в так называемых звездных величинах (см. звезды, XXI, 23); эти видимые величины зависят, конечно, от действительной яркости звезд, но также и от их расстояния от солнца: на деле яркая звезда может казаться слабой, если она очень далека от нас; наоборот, слабая может казаться яркой, если она ближе к нам. Но если известны и видимая яркость и расстояние, то тогда можно сравнить между собой действительные яркости звезд, какими они были бы, если бы все находились на одинаковом расстоянии от солнца. За такое расстояние было условно принято расстояние в 2 062 648 раз больше расстояния земли от солнца; ему соответствует годичный параллакс ровно в 0,1 секунды дуги; звездная величина каждой звезды, воображаемой перенесенною на такое расстояние, называется «абсолютной» величиной этой звезды. И вот при сравнении спектров звезд одного и того же спектрального типа (см. звезды, XXI, 31, 32), но различных «абсолютных» величин, было найдено, что некоторые немногие линии спектра по своей напряженности, ширине определенным образом связаны с абсолютной величиной; так что по их относительной напряженности можно определить «абсолютную» величину. Когда эта связь выражена математической формулой или же просто чертежом, тогда по напряженности линий в спектре любой звезды этого звезды больше или меньше того расстояния, которому соответствует «абсолютная» яркость, т. е. расстояние с параллаксом в 0,1 секунды дуги, а значит можно определить расстояние этой звезды. Этот способ, намеченный Кольшюттером и детально развитый Адамсом, находит в последние годы все большее и большее применение в астрономии.

Спектры есть и у звезд, и они напрямую связаны со спектрами монад, которые эманируют духовные порывы для того, чтобы они могли пройти эволюцию в материальных телах звездных (5м) и планетарных (3м) миров.
В астрономии существует спектральная классификация звезд по ряду физических признаков. Наиболее распространена эта:

Основная (гарвардская) спектральная классификация звёзд

Класс

Температура,
K

Истинный цвет

Видимый цвет

Масса,
M

Радиус,
R

Светимость,
L

Линии водорода

Доля* в глав. послед.
%

Доля*нa ветв. бел.к.
%

Доля* гигантских,
%

30 000—60 000 голубой голубой 60 15 1 400 000 слабые ~0,00003034 - -
10 000—30 000 бело-голубой бело-голубой и белый 18 7 20 000 средне 0,1214 21,8750 -
7500—10 000 белый белый 3,1 2,1 80 сильны 0,6068 34,7222 -
6000—7500 жёлто-белый белый 1,7 1,3 6 средне 3,03398 17,3611 7,8740
5000—6000 жёлтый жёлтый 1,1 1,1 1,2 слабы 7,6456 17,3611 25,1969
3500—5000 оранжевый желтовато-оранжевый 0,8 0,9 0,4 очень слабы 12,1359 8,6806 62,9921
2000—3500 красный оранжево-красный 0,3 0,4 0,04 очень слабы 76,4563 - 3,9370

Однако видимый спектр звезды не всегда совпадает со спектром энергетическим. Также у звезд могут быть не только голубой, белый, желтый, оранжевый и красный, но и все 18 спектров. А если брать спектр пространства, в котором расположена звезда (а он вообще никак не наблюдается приборами), то и все 306 спектров.

Представление о спектрах помогает отслеживать взаимосвязи цивилизаций между собой и с Землей, и ее основными порталами или местами силы. Спектр места силы аналогичен спектру звезды, примеры есть в теме о .

Также оно позволяет сформировать более четкое представление о разных ВЦ и разрешить некоторые споры, которые активно ведутся в эзотерической среде. Как правило, представление о цивилизациях зачастую очень абстрактное и размытое. Здесь я, конечно, не ставлю цель в двух словах рассказать все подробности о ВЦ, но можно хотя бы разграничить основные тендеции и влияния - для начала, разграничив цивилизации отдельных звезд (и звездных систем) в созвездии по спектрам.

Как пример, возьмем созвездие Ориона, в котором на самом деле довольно много разноплановых миров. Некоторые считают Орион родиной рептилий, некоторые - серых, а некоторые - славян и ариев. Правда же где-то посередине.

Ниже рассмотрим основные звезды в созвездии:

Ригель - бело-голубой сверхгигант, тройная звезда. Энергетический спектр: Ригель А - темно-синий на белом, Ригель Б - белый на голубом, Ригель С - синий на белом. Цивилизации ярко выраженного техногенного типа. Много серых и других роботизированных рас, распространено чипирование и киборгизация. Основные зоны влияния на Земле: Петербург, Англия, США. Ярким примером представителя этой цивилизации был Петр I, которые был также одним из ее главных творцов - реставрировал Петербург, активно продвигал технический прогресс и "европейские ценности". Оттуда транслируются описания миров, где техническое "развитие" достигло апогея, нередко в антиутопическом ключе: Хаксли, Азимов, отчасти фильмы "Матрица" и т.д. Вибрационный уровень 3,5 из 100. (уровень указывается на текущий момент, по мере очищения он будет повышаться) Для сравнения - у Земли уровень 5, у Солнца 14 на сегодня.

Бетельгейзе - красный сверхгигант. Энергетический спектр темно-оранжевый на бирюзовом. Агрессивные цивилзации с выраженным рептилоидным управлением, строй близок иудейской теократии ветхозаветных времен. Активно воюют с другими цивилизациями, организовывали десанты рептилоидов на землю. Связаны с иллюминатами и иудейскими жрецами. Основные сферы влияния - Египет, Израиль, Грузия (горские евреи), отчасти Испания и все "места силы" рептов. Однако в ней нет высокого уровня технократии (они используют Ригелианцев как помощников, но сами не внедряют техниеческое управление). Ошибочно также считать, что в системе Бетельгейзе и Ориона в целом есть только рептилоиды. Нормальных людей там тоже достаточно много, хотя им и приходится жить в рамках существующей системы. Вибрационный уровень 8.

Беллатрикс - бело-голубой сверхгигант. Энергетический спектр золотистый на темно-синем. Цивилизация духовно-техногненная. Нет высокого уровня технократии, по общественному строю близка к Персии древних времен, идеология близка к зороастризму. Явлаются активными игроками в дуальной игре, используют голограмму и виртуальные миры для повышения вибраций и оказания влияния на противников. Сферы влияния - Иран, отчасти Индия и Украина. Вибрационный уровень 13.

Альнилам - голубой сверхгигант. Энергетический спектр синий на желтом. Цивлизация техногенно-магическая. Преимущественно кастовый строй с властью кшатриев-воинов. Проводит агрессивную политику, активно участвует во всех конфликтах, распространен культ Кали как богини разрушения и другие темные культы. Одна из родин змеиных рас нагов. Сферы влияния - Индия, Украина. Изначально (до захвата рептилоидами) - предки южноарийских народов, как и с Беллатрикс. Вибрационный уровень 6.

Альнитак - голубой сверхгигант, тройная звезда. Энергетический спектр: Альнитак А - голубой на темно-синем, Альнитак Б - темно-синий на синем, Альнитак С - синий на темно-синем. Тоже ярко выраженная технократия, еще больше, чем в системе Ригеля. Полная власть серых. Через эту звезду идет значительная часть техногенного управления другими цивилизациями, в том числе и землей. Там же системы компьютерного управления временными ветками и сознаниями людей. Основная сфера влияния - США. Вибрационный уровень 2,5.

Саиф - бело-голубая звезда. Энергетический спектр темно-зеленый на черном. Основное место поддежки рептилоидов в 5 мерности. Звезда представляет собой по сути энергетическую дыру, через которую проникает глобалная змея-кундалини, поддерживающая рептилоидную генетику. Там же расположены инкубаторы рептилоидных яиц, змеиные деревья - генераторы рептилоидных форм и эманаций сознания для воплощений в физические тела и т.д. Чисто рептилоидная локация, людей нет. Вибрационный уровень 1.

Минтака - голубой сверхгигант, кратная звезда, состоит из двух бело-голубых гигантов. Энергетический спектр желтый на синем. Цивилизация духовная с ярко выраженным игровым аспектом, и сама парная структура звезды связана с дуальностью и игрой противоположностей. Особенно почитаются шахматы. Как энергетическая структура, шахматная доска пронизывают всю звезду и распорстраняется на Землю и многие другие цивлизации. Можно сказать, это мир шахматистов. Шахматы там используются не только как развлечение, на и как активный способ магического управления реальностью. В целом относительно высокий уровень культуры, схожий с цивилизацией великих Моголов времен расцвета. Сферы влияния - Индия, Украина, Ближний восток. Вибрационный уровень 11.

Спектр и спектральный анализ.

Дисперсия света

Дисперсия света (разложение света) - экспериментально открыта Исааком Ньютоном в 1672 году. Ньютон заметил радужную окраску вокруг звезд, которая видна при наблюдении в телескоп. Это наблюдение сподвигло его поставить опыт и создать новый прибор - спектроскоп. Ньютон направил пучок света на призму. Для получения более насыщенной полосы круглое отверстие было заменено на щелевое.

Дисперсия света (разложение света) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны).

Дисперсией является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде. Белый свет, проходя через стеклянную призму разлагается на спектр. Полученный спектр называют дисперсионным.

В наше время в телескопах используют сложные приборы, называемые спектрографом. Их устанавливают за фокусом объектива телескопа. Раньше во всех спектрографах для разложения света использовали призмы, но теперь призмы заменили на дифракционную решетку, которая так же разлагает белый свет в спектр. Данный спектр называют дифракционным спектром.

Самым простейшим и распространённым примером отражательных дифракционных решёток в быту является компакт диск. На его поверхности есть дорожка в виде спирали с шагом 1,6 мкм между витками. Примерно треть ширины (0,5 мкм) этой дорожки занята углублением (это записанные данные), рассеивающим падающий на него свет, примерно две трети (1,1 мкм) — нетронутая подложка, отражающая свет. Таким образом, компакт-диск — отражательная дифракционная решётка с периодом 1,6 мкм.

Спектральный анализ

Метод спектрального анализа дает разнообразные сведения о небесных светилах. Для спектрального анализа необходим свет, анализируя который можно узнать химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и т. д. Анализ спектров, применяемый в астрофизике является основным методом изучения астрономических объектов.

Спектральный анализ - метод определения химического состава вещества по его спектру.

Виды спектров

Линейчатый спектр излучения. Если внести в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли, то при наблюдении пламени в спектроскоп видно, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии (газы и пары).

Непрерывный спектр. Непрерывная последовательность цветов, переходящих один в другой, возникающая при разложении света за счет преломления в призме является непрерывным спектром. Непрерывные спектры дают раскаленные твердые тела, жидкости или плотные газы. Спектр звезды состоит из непрерывного спектра, пересеченного линиями поглощения.

Линейчатый спектр поглощения. На фоне непрерывного спектра можно наблюдать темные линии поглощения. Излучение более горячего тела, с непрерывным спектром проходя через разреженную холодную среду, образует линии поглощения. Первые наблюдения линейчатых спектров поглощения в спектре Солнца проделал Волластон в 1802 году. Но он не смог дать им объяснения. Позже эти линии были названы «фраунгоферовыми» в честь немецкого физика, которому в 1814 году удалось объяснить их появление.

Полосатые спектры. спектры, состоящие из отдельных полос, характерные для спектров испускания и поглощения молекул. Молекулярные спектры, оптические спектры испускания и поглощения, а также комбинационного рассеяния света, принадлежащие свободным или слабо связанным между собой молекулам. Молекулярные спектры имеют сложную структуру. Типичные молекулярные спектры - полосатые, они наблюдаются в испускании и поглощении и в комбинационном рассеянии в виде совокупности более или менее узких полос в ультрафиолетовой, видимой и близкой инфракрасной областях, распадающихся при достаточной разрешающей силе применяемых спектральных приборов на совокупность тесно расположенных линий. Конкретная структура молекулярных спектров различна для различных молекул и, вообще говоря, усложняется с увеличением числа атомов в молекуле. Для весьма сложных молекул видимые и ультрафиолетовые спектры состоят из немногих широких сплошных полос; спектры таких молекул сходны между собой.

Открытие гелия

18 августа 1868 года во время полного солнечного затмения французский учёный Пьер Жансен в индийском городе Гунтур, впервые исследовал хромосферу Солнца. В момент наблюдения ему удалось настроить свой спектроскоп так, что было возможно наблюдать корону солнца не только в моменты затмения, но и в обычные дни. Последующие наблюдения выявили наряду с линиями водорода (синей, зелено-голубой и красной) яркую жёлтую линию с длиной волны 588 нм (более точно — 587,56 нм). Изначально Жассен и наблюдавшие вместе с ним астрономы приняли ее за линию D натрия. Но впоследствии удалось установить, что данная ярко - желтая линия не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов. 20 октября 1868 года Норман Локьер не зная об открытии Пьера Жансена при проведении исследования солнечного спектра, обнаружил неизвестную жёлтую линию. Через два года Локьер в сотрудничестве с английским химиком Эдуардом Франклендом с которым он работал, предложил дать новому элементу название «гелий» (от древне греческого гелиос — «солнце»). Позже гелий был обнаружен на Земле.

PAGE_BREAK--Полное излучение Солнца определяется по освещённости, создаваемой им на поверхности Земли, – около 100 тыс. лк, когда Солнце находится в зените. Вне атмосферы на среднем расстоянии Земли от Солнца освещённость равна 127 тысяч лк. Сила света Солнца составляет 2,84 10527 свечей. Количество энергии, приходящее в одну минуту на площадку в 1 см, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от Солнца, называют солнечной постоянной. Мощность общего излучения Солнца – 3,83 10526 ватт, из которых на Землю попадает около 2 10 517 ватт, средняя яркость поверхности Солнца (при наблюдении вне атмосферы Земли) составляет 1,98 1059 нт, яркость центра диска Солнца – 2,48 1059 нт. Яркость диска Солнца уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска Солнца для света с длиной волна 3600 А составляет 0,2 яркости его центра, а для 5000 А – около 0,3 яркости центра диска Солнца. На самом краю диска Солнца яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска Солнца выглядит очень резкой.
Спектральный состав света, излучаемого Солнцем, то есть распределение энергии в центре Солнца (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре Солнца соответствует длине волны 4600 А. Спектр Солнца – это непрерывный спектр, ни который наложено более 20 тысяч линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы Солнца, но и о физических условиях в тех слоях, в которых образуются те или иные поглощения. Преобладающим элементом на Солнце является водород. Количество атомов гелия в 4–5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, железо и другие. В спектре Солнца можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и другим.
Магнитные поля на Солнце измеряются главным образом по зеемановскому расщеплению линий поглощения в спектре Солнца. Различают несколько типов магнитных полей на Солнце. Общее магнитное поле Солнца невелико и достигает напряжённости в 1 этой или иной полярности и меняется со временем. Это поле тесно связано с межпланетным магнитным полем и его секторной структурой.
Магнитные поля, связанные с солнечной активностью, могут достигать в солнечных пятнах напряжённости в несколько тысяч. Структура магнитных полей в активных областях очень запутана, чередуются магнитные полюсы различной полярности. Встречаются также локальные магнитные области с напряжённостью поля в сотни вне солнечных пятен. Магнитные поля проникают и в хромосферу, и в солнечную корону.
Большую роль на Солнце играют магнитогазодинамические и плазменные процессы.
При температуре 5000-10000 К газ достаточно ионизирован, проводимость его велика и благодаря огромным масштабам солнечных явлений значение электромеханических и магнитомеханических взаимодействий весьма велико.
Атмосфера солнца
Атмосферу Солнца образуют внешние, доступные наблюдениям слои. Почти всё излучение Солнца исходит из нижней части его атмосферы, называемой фотосферой. На основании уравнений лучистого переноса энергии, лучистого и локального термодинамического равновесия и наблюдаемого потока излучения можно теоретически построить модель распределения температуры и плотности с глубиной в фотосфере. Толщина фотосферы около трёхсот километров, её средняя плотность 3 104–5 кг/м. Температура в фотосфере падает по мере перехода к более внешним слоям, среднее её значение порядка 6000 К, на границе фотосферы около 4200 К. Давление меняется от 2 1054 до 1052 н/м.
Существование конвекции в подфотосферной зоне Солнца проявляется в неравномерной яркости фотосферы, видимой её зернистости – так называемой грануляционной структуре. Гранулы представляют собой яркие пятнышки более или менее круглой формы. Размер гранул 150 – 1000 км, время жизни 5 – 10 минут, отдельные гранулы удаётся наблюдать в течении 20 минут. Иногда гранулы образуют скопления размером до 30 тысяч километров. Гранулы ярче межгранульных промежутков на 20 – 30%, что соответствует разнице в температуре в среднем на 300 К. В отличие от других образований, на поверхности Солнца грануляция одинакова на всех гелиографических широтах и не зависит от солнечной активности. Скорости хаотических движений (турбулентные скорости) в фотосфере составляют по различным определениям 1–3 км/сек. В фотосфере обнаружены квазипериодические колебательные движения в радиальном направлении. Они происходят на площадках размерами 2–3 тысячи километров с периодом около пяти минут и амплитудой скорости порядка 500 м/сек. После нескольких периодов колебания в данном месте затухают, затем могут возникнуть снова. Наблюдения показали также существование ячеек, в которых движение происходит в горизонтальном направлении от центра ячейки к её границам. Скорости таких движений около 500 м/сек. Размеры ячеек – супергранул составляют 30 – 40 тысяч километров. По положению супергранулы совпадают с ячейками хромосферной сетки. На границах супергранул магнитное поле усилено.
Предполагают, что супергранулы отражают на глубине нескольких тысяч километров под поверхностью конвективных ячеек такого же размера. Первоначально предполагалось, что фотосфера даёт только непрерывное излучение, а линии поглощения образуются в расположенном над ней обращающем слое. Позже было установлено, что в фотосфере образуются и спектральные линии, и непрерывный спектр. Однако для упрощения математических выкладок при расчете спектральных линий понятие обращающего слоя иногда применяется.
Часто в фотосфере наблюдаются солнечные пятна и факелы.
Солнечные пятна
Солнечный пятна – это тёмные образования, состоящие, как правило, из более тёмного дра (тени) и окружающей его полутени. Диаметры пятен достигают двухсот тысяч километров. Иногда пятно бывает окружено светлой каёмкой.
Совсем аленькие пятна называют порами. Время жизни пятен от нескольких часов до нескольких месяцев. В спектре пятен ещё больше линий и полос поглощения, чем в спектре фотосферы, он напоминает спектр звезды спектрального класса КО. Смещения линий в спектре пятен из-за эффекта Доплера указывает на движение вещества в пятнах – вытекание на более низких уровнях и втекание на более высоких, скорости движения достигают 3 тысячи м/сек. Из сравнений интенсивности линий и непрерывного спектра пятен и фотосферы следует, что пятна холоднее фотосферы на 1–2 тысячи градусов (4500 К и ниже). Вследствие этого на фоне фотосферы пятна кажутся тёмными, яркость ядра составляет 0,2 – 0,5 яркости фотосферы, яркость полутени около 80% фотосферной. Все солнечные пятна обладают сильным магнитным полем, достигающим для крупных пятен напряжённости 5 тысяч эстердов. Обычно пятна образуют группы, которые по своему магнитному полю могут быть униполярными, биполярными и мультиполярными, то есть содержащими много пятен различной полярности, часто объединённых общей полутенью. Группы пятен всегда окружены факелами и флоккулами, протуберанцами, вблизи них иногда происходят солнечные вспышки, и в солнечной короне над ними наблюдаются образования в виде лучей шлемов, опахал – всё это вместе образует активную область на Солнце. Среднегодовое число наблюдаемых пятен и активных областей, а также средняя площадь, занимаемая ими, меняется с периодом около 11 лет.
Это – средняя величина, продолжительность же отдельных циклов солнечной активности колеблется от 7,5 до 16 лет. Наибольшее число пятен, одновременно видимых на поверхности Солнца, меняется для различных циклов более чем в два раза. В основном пятна встречаются в так называемых королевских зонах, простирающихся от 5 до 30° гелиографической широты по обе сторона солнечного экватора. В начале цикла солнечной активности широта места расположения пятен выше, а в конце цикла – ниже, а на более высоких широтах появляются пятна нового цикла. Чаще наблюдаются биполярные группы пятен, состоящие из двух крупных пятен – головного и последующего, имеющих противоположную магнитную полярность, и несколько более мелких. Головные пятна имеют одну и ту же полярность в течение всего цикла солнечной активности, эти полярности противоположны в северной и южной полусферах Солнца. По-видимому, пятна представляют собой углубления в фотосфере, а плотность вещества в них меньше плотности вещества в фотосфере на том же уровне.
Факелы
В активных областях Солнца наблюдаются факелы – яркие фотосферные образования, видимые в белом свете преимущественно вблизи края диска Солнца. Обычно факелы появляются раньше пятен и существуют некоторое время после их исчезновения. Площадь факельных площадок в несколько раз превышает площадь соответствующей группы пятен. Количество факелов на диске Солнца зависит от фазы цикла солнечной активности. Максимальный контраст (18%) факелы имеют вблизи края диска Солнца, но не на самом краю. В центре диска Солнца факелы практически не видны, контраст их очень мал. Факелы имеют сложную волокнистую структуру, контраст их зависит от длины волны, на которой проводятся наблюдения. Температура факелов на несколько сот градусов превышает температуру фотосферы, общее излучение с одного квадратного сантиметра превышает фотосферное на 3 – 5%. По-видимому, факелы несколько возвышаются над фотосферой. Средняя продолжительность их существования – 15 суток, но может достигать почти трёх месяцев.
Хромосфера
Выше фотосферы расположен слой атмосферы Солнца, называемый хромосферой. Без специальных телескопов хромосфера видна только во время полных солнечных затмений как розовое кольцо, окружающее тёмный диск в те минуты, когда Луна полностью закрывает фотосферу. Тогда можно наблюдать и спектр хромосферы. На краю диска Солнца хромосфера представляется наблюдателю как неровная полоска, из которой выступают отдельные зубчики – хромосферные спикулы. Диаметр спикул 200–2000 километров, высота порядка 10000 километров, скорость подъёма плазмы в спикулах до 30 км/сек. Одновременно на Солнце существует до 250 тысяч спикул. При наблюдении в монохроматическом свете на диске Солнца видна яркая хромосферная сетка, состоящая из отдельных узелков – мелких диаметром до 1000 км и крупных диаметром от 2000 до 8000 км. Крупные узелки представляют собой скопления мелких. Размеры ячеек сетки 30 – 40 тысяч километров.
Полагают, что спикулы образуются на границах ячеек хромосферной сетки. Плотность в хромосфере падает с увеличением расстояния от центра Солнца. Число атомов в одном куб. сантиметре изменяется от 10515 0 вблизи фотосферы до 1059 в верхней части хромосферы. Исследование спектров хромосферы привело к выводу, что в слое, где происходит переход от фотосферы к хромосфере, температура переходит через минимум и по мере увеличения высоты над основанием хромосферы становится равной 8 -10 тысяч Кельвинов, а на высоте в несколько тысяч километров достигает 15 – 20 тысяч Кельвинов.
Установлено, что в хромосфере имеет место хаотическое движение газовых масс со скоростями до 15 1053 м/сек. В хромосфере факелы в активных областях видны как светлые образования, называемые обычно флоккулами. В красной линии спектра водорода хорошо видны тёмные образования, называемые волокнами. На краю диска Солнца волокна выступают за диск и наблюдаются на фоне неба как яркие протуберанцы. Наиболее часто волокна и протуберанцы встречаются в четырёх расположенных симметрично относительно солнечного экватора зонах: полярных зонах севернее +40° и южнее -40° гелиографической широты и низкоширотных зонах около √(30°) в начале цикла солнечной активности и √(17°) в конце цикла. Волокна и протуберанцы низкоширотных зон показывают хорошо выраженный 11-летний цикл, их максимум совпадает с максимумом пятен.
У высокоширотных протуберанцев зависимость от фаз цикла солнечной активности выражена меньше, максимум наступает через два года после максимума пятен.
Волокна, являющиеся спокойными протуберанцами, могут достигать длины солнечного радиуса и существовать в течении нескольких оборотов Солнца. Средняя высота протуберанцев над поверхностью Солнца составляет 30 – 50 тысяч километров, средняя длина – 200 тысяч километров, ширина – 5 тысяч километров. Согласно исследованиям А.Б. Северного, все протуберанцы по характеру движения можно разбить на 3 группы: электромагнитные, в которых движения происходят по упорядоченным искривлённым траекториям – силовым линиям магнитного поля; хаотические, в которых преобладают неупорядоченные турбулентные движения (скорости порядка 10 км/сек); эруптивные, в которых вещество первоначального спокойного протуберанца с хаотическими движениями внезапно выбрасывается с возрастающей скоростью (достигающей 700 км/сек) прочь от Солнца. Температура в протуберанцах (волокнах) 5 – 10 тысяч Кельвинов, плотность близка к средней плотности хромосферы. Волокна, представляющие собой активные, быстро меняющиеся протуберанцы, обычно сильно изменяются за несколько часов или даже минут. Форма и характер движений в протуберанцах тесно связаны с магнитным полем в хромосфере и солнечной короне.
Солнечная корона – самая внешняя и наиболее разрежённая часть солнечной атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До 1931 года корону можно было наблюдать только во время полных солнечных затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска Солнца. В короне хорошо выделяются детали её структуры: шлемы, опахала, корональные лучи и полярные щёточки. После изобретения коронографа солнечную корону стали наблюдать и вне затмений. Общая форма короны меняется с фазой цикла солнечной активности: в годы минимума корона сильно вытянута вдоль экватора, в годы максимума она почти сферична. В белом свете поверхностная яркость солнечной короны в миллион раз меньше яркости центра диска Солнца. Ее свечение образуется в основном в результате рассеяния фотосферного излучения свободными электронами. Практически все атомы в короне ионизированы. Концентрация ионов и свободных электронов у основания короны составляет 1059 частиц в 1 см. Нагрев короны осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии происходит в нижней части короны, но благодаря высокой теплопроводности корона почти изотермична – температура понижается наружу очень медленно. Отток энергии в короне происходит несколькими путями.
В нижней части короны основную роль играет перенос энергии вниз благодаря теплопроводности. К потере энергии приводит уход из короны наиболее быстрых частиц. Во внешних частях короны большую часть энергии уносит солнечный ветер – поток коронального газа, скорость которого растёт с удалением от Солнца от нескольких км/сек у его поверхности до 450 км/сек на расстоянии Земли. Температура в короне превышает 1056 К. В активных слоях короны температура выше – до 1057 К. Над активными областями могут образовываться так называемые корональные конденсации, в которых концентрация частиц возрастает в десятки раз. Часть излучения внутри короны – это линии излучения многократно ионизированных атомов железа, кальция, магния, углерода, кислорода, серы и других химических элементов. Они наблюдаются и в видимой части спектра и в ультрафиолетовой области. В солнечной короне генерируется радиоизлучение Солнца в метровом диапазоне и рентгеновское излучение, усиливающееся во много раз в активных областях. Как показали расчёты, солнечная корона не находится в равновесии с межпланетной средой.
Из короны в межпланетное пространство распространяются потоки частиц, образующие солнечный ветер. Между хромосферой и короной имеется сравнительно тонкий переходной слой, в котором происходит резкий рост температуры до значений, характерных для короны. Условия в нём определяются потоком энергии из короны в результате теплопроводности. Переходный слой является источником большей части ультрафиалетового излучения Солнца.
Хромосфера, переходной слой и корона дают всё наблюдаемое радиоизлучение Солнца. В активных областях структура хромосферы, короны и переходного слоя меняется. Это изменение, однако, ещё недостаточно изучено.
продолжение
--PAGE_BREAK--В активных областях хромосферы наблюдаются внезапные и сравнительно кратковременные увеличения яркости, видимые сразу во многих спектральных линиях. Эти яркие образования существуют от нескольких минут до нескольких часов. Они называются солнечными вспышками (прежнее название – хромосферные вспышки). Вспышки лучше всего видны в свете водородной линии, но наиболее яркие видны иногда и в белом свете. В спектре солнечной вспышки насчитывается несколько сотен эмиссионных линий различных элементов, нейтральных и ионизированных. Температура тех слоёв солнечной атмосферы, которые дают свечение в хромосферных линиях (1–2) х1054 К, в более высоких слоях – до 1057 К. Плотность частиц во вспышке достигает 10513 -10514 в одном кубическом сантиметре. Площадь солнечных вспышек может достигать 10515 м. Обычно солнечные вспышки происходят вблизи быстро развивающихся групп солнечных пятен с магнитным полем сложной конфигурации. Они сопровождаются активизацией волокон и флоккулов, а также выбросами вещества. При вспышке выделяется большоеколичество энергии (до 10521 – 10525 джоулей).
Предполагается, что энергия солнечной вспышки первоначально запасается в магнитном поле, а затем быстро высвобождается, что приводит к локальному нагреву и ускорению протонов и электронов, вызывающих дальнейший разогрев газа, его свечение в различных участках спектра электромагнитного излучения, образование ударной волны. Солнечные вспышки дают значительное увеличение ультрафиалетового излучения Солнца, сопровождаются всплесками рентгеновского излучения (иногда весьма мощными), всплесками радиоизлучения, выбросом карпускул высоких энергий вплоть до 10510 эв. Иногда наблюдаются всплески рентгеновского излучения и без усиления свечения в хромосфере.
Некоторые вспышки (они называются протонными) сопровождаются особенно сильными потоками энергичных частиц – космическими лучами солнечного происхождения.
Протонные вспышки создают опасность для находящихся в полёте космонавтов, сталкиваясь с атомами оболочки корабля так как энергичные частицы, порождают рентгеновское и гамма-излучение, причём иногда в опасных дозах.
Уровень солнечной активности (число активных областей и солнечных пятен, количество и мощность солнечных вспышек и т.д.) изменяется с периодом около 11 лет. Существуют также слабые колебания величины максимумов 11-летнего цикла с периодом около 90 лет. На Земле 11-летний цикл прослеживается на целом ряде явлений органической и неорганической природы (возмущения магнитного поля, полярные сияния, возмущения ионосферы, изменение скорости роста деревьев с периодом около 11 лет, установленным по чередованиям толщины годовых колец, и т.д.). На земные процессы оказывают также воздействие отдельные активные области на Солнце и происходящие в них кратковременные, но иногда очень мощные вспышки. Время существования отдельной магнитной области на Солнце может достигать одного года. Вызываемые этой областью возмущения в магнитосфере и верхней атмосфере Земли повторяются через 27 суток (с наблюдаемым с Земли периодом вращения Солнца). Наиболее мощные проявления солнечной активности – солнечные (хромосферные) вспышки происходят нерегулярно (чаще вблизи периодов максимальной активности), длительность их составляет 5–40 минут, редко несколько часов. Энергия хромосферной вспышки может достигать 10525 джоулей, из выделяющейся при вспышке энергии лишь 1–10% приходится на электромагнитное излучение в оптическом диапазоне. По сравнению с полным излучением Солнца в оптическом диапазоне энергия вспышки не велика, но коротковолновое излучение вспышки и генерируемые при вспышек электроны, а иногда солнечные космические лучи могут дать заметный вклад в рентгеновское и карпускулярное излучение Солнца. В периоды повышения солнечной активности его рентгеновское излучение увеличивается в диапазоне 30 -10 нм в два раза, в диапазоне 10 -1 нм в 3–5 раз, в диапазоне 1–0,2 нм более чем в сто раз. По мере уменьшения длины волны излучения вклад активных областей в полное излучение Солнца увеличивается, и в последнем из указанных диапазонов практически всё излучение обусловлено активными областями. Жёсткое рентгеновское излучение с длиной волны меньше 0,2 нм появляется в спектре Солнца всего лишь на короткое время после вспышек. В ультрафиолетовом диапазоне (длина волны 180–350 нм) излучение Солнца за 11-летний цикл меняется всего на 1–10%, а в диапазоне 290–2400 нм остаётся практически постоянным и составляет 3,6 10526 ватт.
Постоянство энергии, получаемой Землёй от Солнца, обеспечивает стационарность теплового баланса Земли. Солнечная активность существенно не сказывается не энергетике Земли как планеты, но отдельные компоненты излучения хромосферных вспышек могут оказывать значительное влияние на многие физические, биофизические и биохимические процессы на Земле.
Активные области являются мощным источником корпускулярного излучения. Частицы с энергиями около 1 кэв (в основном протоны), распространяющиеся вдоль силовых линий межпланетного магнитного поля из активных областей усиливают солнечный ветер. Эти усиления (порывы) солнечного ветра повторяются через 27 дней и называются рекуррентными. Аналогичные потоки, но ещё большей энергии и плотности, возникают при вспышках. Они вызывают так называемые спорадические возмущения солнечного ветра и достигают Земли за интервалы времени от 8 часов до двух суток. Протоны высокой энергии (от 100 Мэв до 1 Гэв) от очень сильных «протонных» вспышек и электроны с энергией 10–500 кэв, входящие в состав солнечных космических лучей, приходят к Земле через десятки минут после вспышек; несколько позже приходят те из них, которые попали в «ловушки» межпланетного магнитного поля и двигались вместе с солнечным ветром. Коротковолновое излучение и солнечные космические лучи (в высоких широтах) ионизируют земную атмосферу, что приводит к колебаниям её прозрачности в ультрафиолетовом и инфракрасном диапазонах, а также к изменениям условий распространения коротких радиоволн (в ряде случаев наблюдаются нарушения коротковолновой радиосвязи).
Усиление солнечного ветра, вызванное вспышкой, приводит к сжатию магнитосферы Земли с солнечной стороны, усилению токов на её внешней границе, частичному проникновению частиц солнечного ветра в глубь магнитосферы, пополнению частицами высоких энергий радиационных поясов Земли и т.д. Эти процессы сопровождаются колебаниями напряжённости геомагнитного поля (магнитной бурей), полярными сияниями и другими геофизическими явлениями, отражающими общее возмущение магнитного поля Земли. Воздействие активных процессов на Солнце (солнечных бурь) на геофизические явления осуществляется как коротковолновой радиацией, так и через посредство магнитного поля Земли. По-видимому, эти факторы являются главными и для физико-химических и
биологических процессов. Проследить всю цепь связей, приводящих к 11-летней периодичности многих процессов на Земле пока не удаётся, но накопленный обширный фактический материал не оставляет сомнений в существовании таких связей. Так, была установлена корреляция между 11-летним циклом солнечной активности и землетрясениями, урожаями сельхозкультур, числом сердечнососудистых заболеваний и т.д. Эти данные указывают на постоянное действие солнечно-земных связей.
Наблюдения Солнца ведутся с помощью рефракторов небольшого или среднего размера и больших зеркальных телескопов, у которых большая часть оптики неподвижна, а солнечные лучи направляются внутрь горизонтальной или башенной установки телескопа при помощи одного или двух движущихся зеркал. Создан специальный тип солнечного телескопа – внезатменный коронограф. Внутри коронографа осуществляется затемнение Солнца специальным непрозрачным экраном. В коронографе во много раз уменьшается количество рассеянного света, поэтому можно наблюдать вне затмения самые внешние слои атмосферы Солнца. Солнечные телескопы часто снабжаются узкополосными светофильтрами, позволяющими вести наблюдения в свете одной спектральной линии. Созданы также нейтральные светофильтры с переменной прозрачностью по радиусу, позволяющие наблюдать солнечную корону на расстоянии нескольких радиусов Солнца. Обычно крупные солнечные телескопы снабжаются мощными спектрографами с фотографической или фотоэлектрической фиксацией спектров. Спектрограф может иметь также магнитограф – прибор для исследования зеемановского расщепления и поляризации спектральных линий и определения величины и направления магнитного поля на Солнце. Необходимость устранить замывающее действие земной атмосферы, а также исследования излучения Солнца в ультрафиолетовой, инфракрасной и некоторых других областях спектра, которые поглощаются в атмосфере Земли, привели к созданию орбитальных обсерваторий за пределами атмосферы, позволяющих получать спектры Солнца и отдельных образований на его поверхности вне земной атмосферы.

Путь Солнца среди звезд
Каждый день, поднимаясь из-за горизонта в восточной стороне неба, Солнце проходит по небу и вновь скрывается на западе. Для жителей Северного полушария это движение происходит слева направо, для южан справа налево. В полдень Солнце достигает наибольшей высоты, или, как говорят астрономы, кульминирует. Полдень – это верхняя кульминация, а бывает еще и нижняя – в полночь. В наших средних широтах нижняя кульминация Солнца не видна, так как она происходит под горизонтом. А вот за Полярным кругом, где Солнце летом иногда не заходит, можно наблюдать и верхнюю, и нижнюю кульминации.
На географическом полюсе суточный путь Солнца практически параллелен горизонту. Появившись в день весеннего равноденствия, Солнце четверть года поднимается все выше и выше, описывая круги над горизонтом. В день летнего солнцестояния оно достигает максимальной высоты (23,5˚). Следующие четверть года, до осеннего равноденствия, Солнце спускается. Это полярный день. Затем на полгода наступает полярная ночь. В средних широтах на протяжении года видимый суточный путь Солнца то сокращается, то увеличивается. Наименьшим он оказывается в день зимнего солнцестояния, наибольшим – в день летнего солнцестояния. В дни равноденствий
Солнце находится на небесном экваторе. В это же время оно восходит в точке востока и заходит в точке запада.
В период от весеннего равноденствия до летнего солнцестояния место восхода Солнца немного смещается от точки восхода влево, к северу. А место захода удаляется от точки запада вправо, хотя тоже к северу. В день летнего солнцестояния Солнце появляется на северо-востоке, а в полдень оно кульминирует на максимальной за год высоте. Заходит Солнце на северо-западе.
Затем места восхода и захода смещаются обратно к югу. В день зимнего солнцестояния Солнце восходит на юго-востоке, пересекает небесный меридиан на минимальной высоте и заходит на юго-западе. Следует учитывать, что вследствие рефракции (то есть преломления световых лучей в земной атмосфере) видимая высота светила всегда больше истинной.
Поэтому восход Солнца происходит раньше, а заход – позже, чем это было бы при отсутствии атмосферы.
Итак, суточный путь Солнца представляет собой малый круг небесной сферы, параллельный небесному экватору. В то же время в течении года Солнце перемещается относительно небесного экватора то к северу, то к югу. Дневная и ночная части его пути неодинаковы. Они равны только в дни равноденствий, когда Солнце находится на небесном экваторе.
Выражение «путь Солнца среди звезд» кому-то покажется странным. Ведь днем звезд не видно. Поэтому нелегко заметить, что Солнце медленно, примерно на 1˚ за сутки, перемещается среди звезд справа налево. Зато можно проследить, как в течение года меняется вид звездного неба. Все это – следствие обращения Земли вокруг Солнца.
Путь видимого годичного перемещения Солнца на фоне звезд именуется эклиптикой (от греческого «эклипсис» – «затмение»), а период оборота по эклиптике – звездным годом. Он равен 265 суткам 6 часам 9 минутам 10 секундам, или 365, 2564 средних солнечных суток.
Эклиптика и небесный экватор пересекаются под углом 23˚26" в точках весеннего и осеннего равноденствия. В первой из этих точек Солнце обычно бывает 21 марта, когда оно переходит из южного полушария неба в северное. Во второй – 23 сентября, при переходе их северного полушария в южное. В наиболее удаленной к северу точке эклиптике Солнце бывает 22 июня (летнее солнцестояние), а к югу – 22 декабря (зимнее солнцестояние). В високосный год эти даты сдвинуты на один день.
Из четырех точек эклиптики главной является точка весеннего равноденствия. Именно от нее отсчитывается одна из небесных координат – прямое восхождение. Она же служит для отсчета звездного времени и тропического года – промежутка времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия. Тропический год определяет смену времен года на нашей планете.
Так как точка весеннего равноденствия медленно перемещается среди звезд вследствие прецессии земной оси, продолжительность тропического года меньше продолжительности звездного. Она составляет 365,2422 средних солнечных суток. Около 2 тысяч лет назад, когда Гиппарх составил свой звездный каталог (первый дошедший до нас целиком), точка весеннего равноденствия находилась в созвездии Овна. К нашему времени она переместилась почти на 30˚, в созвездие Рыб, а точка осеннего равноденствия – из созвездия Весов в созвездие Девы. Но по традиции точки равноденствий обозначаются прежними знаками прежних «равноденственных» созвездий – Овна и Весов. То же случилось и с точками солнцестояния: летнее в созвездии Тельца отмечается знаком Рака, а зимнее в созвездие Стрельца – знаком Козерога.
И наконец, последнее, что связано с видимым годичным движением Солнца. Половину эклиптики от весеннего равноденствия до осеннего (с 21 марта по 23 сентября) Солнце проходит за 186 суток. Вторую половину, от осеннего равноденствия да весеннего, – за 179 суток (180 в високосный год). Но ведь половинки эклиптики равны: каждая по 180˚. Следовательно, Солнце движется по эклиптике неравномерно. Эта неравномерность объясняется изменением скорости движения Земли по эллиптической орбите вокруг Солнца. Неравномерность движения Солнца по эклиптике приводит к разной длительности времен года. Для жителей северного полушария, например, весна и лето на шесть суток продолжительнее осени и зимы. Земля 2–4 июня расположена от Солнца на 5 миллионов километров дольше, чем 2–3 января, и движется по своей орбите медленнее в соответствии со вторым законом Кеплера. Летом Земля получает от
Солнца меньше тепла, но зато лето в Северном полушарии продолжительнее зимы. Поэтому в Северном полушарии Земли теплее, чем в Южном.
Солнечные затмения
В момент лунного новолуния может произойти солнечное затмение – ведь именно в новолуние Луна проходит между Солнцем и Землей. Астрономы заранее знают, когда и где будет наблюдаться солнечное затмение, и сообщают об этом в астрономических календарях.
Земле достался один-единственный спутник, но зато какой! Луна в 400 раз меньше Солнца и как раз в 400 раз ближе его к Земле, поэтому на небе Солнце и Луна кажутся дисками одинаковых размеров. Так что при полном солнечном затмении Луна целиком заслоняет яркую поверхность Солнца, оставляя при этом открытой всю солнечную атмосферу.
Точно в назначенный час и минуту сквозь темное стекло видно, как на яркий диск Солнца наползает с правого края что-то черное, как появляется на нем черная лунка. Она постепенно разрастается, пока наконец солнечный круг не примет вид узкого серпа. При этом быстро ослабевает дневной свет. Вот Солнце полностью прячется за темной заслонкой, гаснет последний дневной луч, и тьма, кажущаяся тем глубже, чем она внезапнее, расстилается вокруг, повергая человека и всю природу в безмолвное удивление.
О затмении Солнца 8 июля 1842 года в городе Павии (Италия) рассказывает английский астроном Фрэнсис Бейли: «Когда наступило полное затмение и солнечный свет мгновенно потух, вокруг темного тела Луны внезапно возникло какое-то яркое сияние, похожее на корону ил на ореол вокруг головы святого.
Ни в каких отчетах о прошлых затмения не было написано о чем-то подобном, и я вовсе не ожидал увидеть великолепие, находившееся теперь у меня перед глазами. Ширина короны, считая от окружности диска Луна, была равна примерно половине лунного диаметра. Она казалась составленной из ярких лучей. Ее свет был плотнее около самого края Луны, а по мере удаления лучи короны становились все слабее, тоньше. Ослабление света шло совершенно плавно вместе с увеличение расстояния. Корона представлялась в виде пучков прямых слабых лучей; их внешние концы расходились веером; лучи были неравной длины. Корона была не красноватая, не жемчужная, она была совершенно белого цвета. Ее лучи переливались или мерцали, как газовое пламя. Как не блестяще было это явление, какие бы восторги оно не вызывало у зрителей, но все же в этом странном, дивном зрелище было точно что-то зловещее, и я вполне понимаю, насколько могли быть потрясены и испуганы люди во времена, когда эти явления происходили совершенно неожиданно.
продолжение
--PAGE_BREAK--

Спектральный анализ - мощнейшее орудие изучения космических объектов.

Прибор для получения спектра - спектроскоп состоит из коллиматора, призмы и зрительной трубы (рис.). В передней части коллиматора, обращенной к источнику света, установлена узкая щель. От нее внутрь трубки коллиматора идет расходящийся пучок лучей. Щель располагают в главном фокусе объектива коллиматора, так что из коллиматора выходит параллельный пучок лучей.

Что произойдет, если мы направим этот пучок лучей в объектив третьей составной части спектроскопа - зрительной трубы?

Ее объектив соберет лучи в своем главном фокусе и здесь образуется изображение щели; мы можем его рассматривать в окуляр и увидим четкое изображение входной щели спектроскопа.

Между объективами коллиматора и зрительной трубы помещают трехгранную стеклянную призму таким образом, чтобы ее преломляющее ребро было параллельно щели. Призма преломляет падающий на нее из объектива коллиматора параллельный поток лучей, отклоняя его к своему основанию. При этом лучи различного цвета отклоняются по-разному, в зависимости от длины волны, как это следует из формулы (3.2). Таким образом, призма разлагает свет на совокупность одноцветных (монохроматических) пучков лучей. Вместо одного изображения щели в фокальной плоскости зрительной трубы спектроскопа образуется множество разноцветных изображений щели, примыкающих друг к другу и распределенных в соответствии с изменением длин волн, т. е. радужная полоска спектра. То направление, в котором вытянут спектр, называется направлением дисперсии. Понятно, почему щель спектроскопа должна быть достаточно узкой. Если мы расширим щель, то соседние монохроматические изображения належатся друг на друга и спектр «замоется».

При визуальных наблюдениях в спектроскоп мы видим радужную полоску спектра. Если же вместо окуляра поместить в фокальной плоскости зрительной трубы кассету, то зрительная труба превратится в фотографическую камеру, а спектроскоп в спектрограф - прибор, широко используемый астрофизиками. Правда, при его помощи получают черно-белое изображение спектра, но это нисколько не мешает получению богатейшей информации о небесных светилах.

Рис. Устройство спектроскопа

Спектр излучения, испускаемого накаленным твердым телом или нагретой до свечения жидкостью,- сплошной. Если посмотреть через спектроскоп на нить электрической лампочки, то можно увидеть яркую радужную полоску, которая называется непрерывным спектром. Существуют способы, которые дают возможность измерять интенсивность излучения в различных длинах волн. Тогда, отложив на горизонтальной оси длины волны Я, а на вертикальной оси - интенсивность излучения (энергию) Е\, получим график, который называется кривой распределения энергии в спектре (рис. 74). Вид этой кривой зависит главным образом от температуры излучателя. Для лучей, обладающих малой длиной волны, энергия Еλ мала. По мере увеличения длины волны энергия возрастает и при некоторой длине волны λ макс достигает максимума; при дальнейшем увеличении длины волны энергия излучения убывает. Оказывается, что температура Т и λ, макс связаны между собой формулой

Т х λ Макс = постоянной величине.

Эта формула выражает закон Вина (В формулу входит абсолютная температура Г, отсчитываемая от температуры t = -273° по шкале Цельсия. ) Из нее следует, что мало нагретые тела излучают длинноволновые (инфракрасные) лучи, в то время как сильно нагретые сильнее всего излучают синие и даже фиолетовые лучи. Изучая распределение энергии в спектре, можно определять температуру звезд. В этом состоит одна из задач, которые ставит перед собой астроспектроскопия.

Однако спектральные исследования дают возможность получать гораздо более богатую информацию о небесных светилах. Дело в том, что нагретый, доведенный до свечения разреженный газ излучает не непрерывный спектр, а линейчатый, состоящий из определенного набора узких, почти монохроматических спектральных линий. Яркие линии называются эмиссионными. Так, например, если ввести в пламя горелки обычную поваренную соль, то оно окрасится в интенсивный желтый цвет. В спектроскоп мы увидим две яркие желтые эмиссионные спектральные линии, обозначаемые D 1 и D 2 , испускаемые нагретыми парами натрия, который входит в состав поваренной соли. Особенно богат линиями спектр железа, превращенного при высокой температуре в газообразное состояние.

Составлены подробные атласы и каталоги спектральных линий химических элементов, и это помогает производить спектральный анализ вещества, узнавать, какие химические элементы в нем присутствуют.

Надо иметь в виду, что помимо эмиссионных линий наблюдаются также абсорбционные, темные линии поглощения, которые занимают те же места в спектре. Их легко пронаблюдать в лаборатории, если проделать такой опыт. Наблюдая в спектроскоп непрерывный спектр накаленного твердого тела, поместим на пути лучей, между этим телом и щелью спектроскопа, пламя горелки, насыщенной парами натрия. На месте двух ярких желтых эмиссионных линий натрия мы увидим на фоне непрерывного спектра две темные линии D 1 и D 2 , так как пары и газы способны поглощать те же самые излучения, которые они сами испускают.

Вид линейчатого спектра, длины волн спектральных линий зависят от свойств данного атома. Как известно, атом любого химического элемента состоит из центрального, положительно заряженного ядра, окруженного электронами. Наименее прочно связанный с ядром электрон легче поддается внешним воздействиям - его называют оптическим электроном. Этот электрон способен поглощать падающую на атом извне энергию излучения; «запасаясь» дополнительной энергией, он изменяет свое движение, приходя в возбужденное состояние. Он может также прийти в возбужденное состояние и в результате столкновений атома с другим атомом или электроном, которые неизбежны при тепловом движении.

Атомная физика установила, что у каждого атома существуют свои определенные дискретные энергетические уровни, и электрон, при своих переходах может «задерживаться» только на них. Каждому из уровней можно приписать определенный номер-главное квантовое число; чем выше расположен этот уровень, тем больше его энергия. Обозначим энергию, соответствующую квантовому числу k, через Е k , а квантовому числу i - через Е i и допустим, что E k больше, чем E i . Пусть, далее, оптический электрон возбужден до состояния E k . По законам атомной физики электрон не может долго оставаться в возбужденном состоянии (за исключением некоторых уровней энергии) и через миллионные доли секунды самопроизвольно, как говорят, спонтанно, должен перейти в другое состояние, обладающее меньшей энергией.

Допустим, что он перешёл и состояние с энергией Е i . Этот переход сопровождается излучением фотона, энергия которого равна разности ек - ei. Фотон будет иметь частоту vfti, которая вычисляется по формуле

Hν ki = E k - E i (3.5)

Где h - постоянная Планка, равная 6,6 X 10-27 эрг" х сек. Фотон имеет не только частоту, но и длину волны λ = с: ν, где через с обозначена скорость света.

Таким образом, в результате этого перехода оптический электрон испустит дискретную спектральную линию, обладающую длиной волны λ ki . Так, из различных переходов оптического электрона образуется линейчатый эмиссионный спектр.

В нормальном, невозбужденном состоянии электрон обладает энергией самого глубокого уровня, которую мы обозначим через Е±. Теперь допустим, что на атом падает извне излучение самых разнообразных частот v. Может ли оптический электрон поглотить излучение любой частоты, т. е. любой длины волны? Конечно, нет, и вот почему.

У данного атома имеются следующие «дозволенные» уровни энергии, которые мы выписываем в порядке ее возрастания:

Е 1 ,Е 2 ,Е 3 ,...Е i ,...,Е k ,...,Е ∞

Электрон может поглощать излучения только тех частот, которые соответствуют переходам

Е 2 - Е 1 = hν 21 , Е 3 - Е 1 = hν 31 , Е 4 - Е 1 = hν 41 и т. д.

Все эти переходы соответствуют дискретным спектральным линиям с длинами волн

λ 21 ,λ 31 ,λ 41 и т.д.,

Которые все вместе образуют серию спектральных линий, соответствующих поглощению излучения электроном при его переходе с одного и того же уровня энергии Е 1 .

Если перед тем, как поглотить энергию излучения, оптический электрон уже был возбужденным и находился, например, в состоянии с энергией E 2 , то он может поглощать порции энергии

Е 3 - Е 2 = hν 32 , Е 4 - Е 2 = hν 42 , Е 5 - Е 2 = hν 52

Т. е. опять набор дискретных частот (следовательно, дискретных длин волн), но на этот раз другой серии, у которой нижний уровень энергии Е2.

Обобщая сказанное, заметим, что серий спектральных линий у данного атома бесконечно много, так как они могут начинаться с любого из уровней энергии. На практике приходится встречаться только с небольшим числом серий, потому что по мере увеличения квантового числа, соответствующего наиболее низкой энергии уровня, определяющего данную серию, вся серия сдвигается в инфракрасную часть спектра тем дальше, чем больше «начальное» квантовое число данной серии.

Но не следует думать, что один атомов результате единичного акта поглощения энергии одним электроном может поглотить все доступные для него излучения соответствующих длин волн. В результате единичного акта поглощения образуется только одна спектральная линия. Однако если атомов много и они помещены в поле излучения, обладающего самыми разнообразными частотами, то в непрерывном спектре этого излучения появятся все линии поглощения, объединяемые описанными выше сериями. В то же время, излучение с промежуточными длинами волн поглощаться не может, и для него «облако» атомов прозрачно. Для того чтобы наглядно разобраться в систематике спектральных линий данного химического элемента, свойственные ему дозволенные уровни энергии располагаются в виде схемы. Такая схема для атомов водорода изображена на рис. Чем больше запас энергии оптического электрона, тем выше расположен уровень. Поэтому переходы с нижних уровней на верхние соответ-ствуют актам поглощения, т. е. образованию абсорбционной линии (т. е. линии поглощения). При переходах же сверху вниз происходит излучение эмиссионной спектральной линии.

Слева от каждого уровня отмечены главные квантовые числа-номера уровней 1, 2, 3, 4, 5 и 6. Следующие, более высокие уровни надо нумеровать 7, 8, 9 и т. д. до бесконечности. При росте квантовых чисел уровни сближаются, и уровень энергии, помеченный знаком оо, соответствует бесконечно большому квантовому числу. Если электрон, находящийся в невозбужденном состоянии Е 1 , поглотит соответствующую этому уровню энергию, то он теряет связь с атомом и уходит от него в пространство, а атом ионизуется, приобретая при этом избыточный электрический заряд. Подсчитаем эту энергию и частоту поглощаемого излучения ν∞ 1 . Тогда по формуле (3.5) hν∞ 1 = Е ∞ - Е 1 . Частота ν∞ 1 называется частотой «головы» серии. Ей соответствует длина волны ν∞ 1 .

Пусть теперь оптический электрон уже был возбужден до состояния Е 2 . Тогда для ионизации атома надо, чтобы электрон поглотил энергию

Е ∞ - Е 2 = hν∞ 2 ,

Которой соответствуют частота ν∞ 2 и длина волны λ∞ 2 . Это длина волны головы второй серии. Таким образом, каждая из серий имеет свою голову.

Но электрон может поглощать и большую энергию, т. е. еще более жесткое излучение, обладающее меньшей длиной волны.

Тогда он покинет атом с остаточной энергией 1/2 mυ 2 , которую можно вычислить по формуле

1/2 mυ 2 = hν - (Е ∞ - Е i) , (3.6)

Где через E i обозначена энергия того уровня, на котором находился электрон в момент поглощения фотона.

Таким образом, помимо линейчатого спектра, образуется и непрерывный.

Водород - один из наиболее распространенных во Вселенной химических элементов, и с его свойствами нам придется встретиться в дальнейшем не раз. Поэтому рассмотрим его несколько подробнее.

Находясь в нормальном состоянии Ег, оптический электрон может поглотить излучение, имеющее длину волны 1216 ангстрем (Ангстрем - единица длины, равная 10 -8 см. Обозначается буквой А. ). Образуется абсорбционная линия серии Лаймана, называемая линией Лайман-альфа (L α). Электрон же переходит в возбужденное состояние, соответствующее уровню энергии Е 2 .

При поглощении энергии Е 3 - Е 1 электрон переходит на третий уровень: образуется линия, имеющая длину волны 1026 А и называемая линией Лайман-бета (Lβ). Ее длина волны меньше, чем у L α . При переходе с первого уровня на четвертый поглощается спектральная линия L γ , с длиной волны 973 А. Дальнейшие переходы из состояния Е 1 приводят к появлению всей серии Лаймана, которая сгущается к своей голове с длиной волны 912 А. С этой длины во^ны в сторону более коротких волн вступает в свои права область непрерывного поглощения. При поглощении более жесткого излучения атом водорода ионизуется.

В земных условиях серия Лаймана в спектрах небесных светил наблюдаться не может, так как коротковолновый участок спектра с длинами волн меньшими 3200 А полностью поглощается земной атмосферой. Таким образом, серию Лаймана можно наблюдать в лабораториях или вне земной атмосферы со спутников и орбита-тальных обсерваторий. Это одна из задач внеатмосферной астрономии.

Переходы электрона со второго (возбужденного) уровня на более высокие порождают знаменитую серию Бальмера, которая не поглощается атмосферой. Ее хорошо видно в спектрах многих звезд.

При переходе оптического электрона со второго уровня на третий образуется линия поглощения Н α , расположенная в красной области спектра. Линия поглощения Нр образуется при переходе электрона со второго уровня на четвертый; она обладает меньшей длиной волны, чем Н α . Далее следует H γ , Н δ и т. д. Вся серия Бальмера сходится к своей голове, которая имеет длину волны, равную 3646 А. При более коротких длинах волн мы снова встречаем область непрерывного поглощения, приводящего к ионизации атома. На этот раз электрон покидает атом со второго уровня, из возбужденного состояния.

При переходах электрона с третьего уровня на высшие образуется серия спектральных линий Пашена - Бака, расположенная в инфракрасной области спектра.

До сих пор мы имели дело с атомарным спектром поглощения. Все сказанное можно применить и к эмиссионным спектрам излучения. Если электрон находится в верхнем возбужденном состоянии с энергией E k , то он может, как мы говорили, испустить фотон частоты ν ki , возвращаясь на более низкий энергетический уровень E i . В спектре появится яркая линия - эмиссионная. При этом часто возникает «размен» одного фотона на несколько, обладающих меньшими частотами. Приведем конкретный пример. Допустим, что в результате поглощения излучения оптический электрон атома водорода перешел с нормального уровня Е 1 на уровень с энергией Е 4 . Это соответствует поглощению спектральной линии L γ . После этого у возбужденного оптического электрона могут быть четыре возможности спонтанного перехода на уровни меньшей энергии:

1) переход с четвертого уровня на первый, при котором излучается та же спектральная линия L γ ;

2) переход с четвертого уровня на второй, а затем со второго -на первый; излучаются две спектральные линии Н β и L α ;

3) переход с четвертого уровня на третий, а затем с третьего - на первый; излучаются две спектральные линии: Пашена - Бака α и Н β ;

4) переход с четвертого уровня на третий, далее с третьего -на второй, и затем со второго на первый; излучаются три спектральные линии Пашена - Бака α, Н α и L α .

Такое явление наблюдается в космическом разреженном газе. Заметим, что при разделении одного фотона на несколько каждая из возникших спектральных линий имеет большую длину волны по сравнению с поглощенной.

Более детальное исследование атомных спектров и строения электронных оболочек атомов привело к выводу, что каждый энергетический уровень E k , отвечающий главному квантовому числу k , состоит из нескольких подуровней. Они характеризуются, кроме главного квантового числа, еще побочными квантовыми числами и несколько отличаются друг от друга величиной энергии; теперь у них различные энергии, группирующиеся около E k . По законам атомной физики не всякие переходы между подуровнями могут осуществляться, или, как говорят, разрешены. Бывают случаи, когда возбужденный оптический электрон после излучения разрешенной спектральной линии попадает на такой подуровень, из которого нет разрешенного выхода в сторону более глубоких уровней энергии, и он застревает в этом состоянии надолго. Тогда говорят, что электрон попал на сверхустойчивый, метастабильный уровень.

Однако законы атомной физики не знают абсолютных запрещений. Если переход из метастабильного уровня путем излучения запрещен, то это еще не означает, что он не может осуществиться. Дело в том, что время пребывания электрона на метастабильном уровне гораздо продолжительнее, чем на нормальном. Если за это время никакая внешняя причина (например, столкновение с другим атомом либо дополнительное поглощение фотона) не вы-ведет^электрон с метастабильного уровня, то он придет в нормальное состояние, испустив «запрещенную» спектральную линию.

Для осуществления такого перехода нужно, чтобы газ был очень разреженным и внешнее излучение было достаточно слабым. Это осуществляется, например, у планетарных туманностей и в солнечной короне.

У атома водорода самый глубокий уровень энергии Е 1 состоит из двух подуровней, которые отличаются двумя возможными различными направлениями вращения электрона вокруг оси. Хотя эти уровни мало отличаются по энергии, один из них несколько выше и является метастабильным. Небольшая разность значений энергии приводит, в согласии с формулой (3.5), к тому, что в случае излучения запрещенной линии ее частота должна быть малой, а следовательно, длина волны - большой. Действительно, атом водорода, находясь в условиях космического пространства, излучает «радиолинию» с длиной волны, равной 21 см.

Теперь перейдем к описанию молекулярных спектров поглощения. Они состоят из более или менее широких полос, размещенных в характерных для данной молекулы участках спектра. Каждая из полос состоит из очень большого числа спектральных линий, столь тесно расположенных друг к другу, что их можно разделить только при помощи спектральных приборов, обладающих огромной дисперсией.

Молекулярные спектры хорошо изучены в земных лабораториях, и это дает возможность судить по виду спектра о химическом составе поглощающей свет среды, сквозь которую проходит излучение. Молекулы образуются и становятся устойчивыми при сравнительно низких температурах, например, в оболочках холодных (красных) звезд и в атмосферах планет.

Теперь надо упомянуть еще об одном явлении, на котором основаны многие важные выводы астрофизики. Речь идет о принципе Доплера, согласно которому при движении источника света вдоль луча зрения длины волн спектральных линий изменяются пропорционально скорости. Если нормальная (лабораторная) длина волны какой-либо спектральной линии равна А,0, а наблюдаемая длина волны λ, то справедлива формула


В ней через с обозначена скорость света, а через υ r - лучевая скорость, равная проекции пространственной скорости на луч зрения. Если источник света удаляется, то длины волн увеличиваются, а если он приближается, то длины волн уменьшаются. Как нетрудно видеть из формулы (3. 7), у удаляющегося источника света лучевые скорости положительны, а у приближающегося -отрицательны.

До сих пор мы говорили главным образом о лабораторных исследованиях спектров. При изучении спектров небесных тел нужно учитывать некоторые особые условия.

Звезды, в том числе и Солнце,- огромные скопления газообразного, нагретого до высокой температуры вещества. В их внешних частях плотность и давление газа малы, но они быстро возрастают по мере углубления в недра. Быстро растет и температура. Достаточно сказать, что если во внешних слоях Солнца температура близка к шести тысячам градусов, то вблизи его центра она доходит до нескольких миллионов градусов. Скорость теплового движения газа здесь столь велика, что столкновения атомов приводят к их полной ионизации. Расчеты показывают, что такое вещество мало прозрачно для излучения. При подъеме в наружные слои непрозрачность уменьшается и, наконец, мы встречаемся с таким слоем, от которого к нам идет наблюдаемое нами излучение. Этот слой называется фотосферой.

Фотосфера испускает тепловое излучение, имеющее непрерывный спектр; оно возникает за счет хаотических тепловых движений заряженных частиц - электронов и ионов.

Над фотосферой расположены более разреженные и более холодные слои, в которых поглощается идущее от фотосферы излучение. Здесь образуется описанный выше спектр поглощения. Таким образом, изучая химический состав звезд по их спектрам, мы исследуем состав звездных атмосфер, но не звездных недр.

Точно так же, изучая дополнительные спектральные линии, возникающие в спектре той или иной планеты, по сравнению со спектром Солнца, мы изучаем химический состав ее атмосферы.

Кроме того, не надо забывать, что и земная атмосфера частично поглощает те или иные спектральные линии и полосы, которые называются теллурическими. Особенно сильно поглощение, производимое молекулами кислорода и водяными парами.

Доступны ли любителю астрономии исследования спектров небесных светил?

Конечно, многие задачи, такие, например, как определение лучевых скоростей, требующие применения очень сложного, мощного и дорогого оборудования, любитель решать не может. Вместе с тем некоторые спектральные наблюдения можно выполнять, пользуясь весьма скромными, подчас самодельными инструментами.