Пределы по правилу лопиталя. Правило Лопиталя для чайников: определение, примеры решения, формулы

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя . Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли . Сформулировал его швейцарский математик Иоганн Бернулли , а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0 . Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0 :

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование, приводящее к неопределенности 0/0 :

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:

Пример 2

Вычислить с использованием правила Лопиталя:

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а , то правило Лопиталя можно применять несколько раз.

Найдем предел (n натуральное число). Для этого применим правило Лопиталя n раз:

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам . Они с радостью помогут разобраться в тонкостях решения.

Инструкция

Неопределенность вида [∞-∞], раскрывается, если имеется в виду разность каких-либо дробей. Приведя эту разность к общему знаменателю, получите некоторое отношение функций.

Неопределенности типа 0^∞, 1^∞, ∞^0 возникают при вычислении типа p(x)^q(x). В этом случае применяют предварительное дифференцирование. Тогда искомого предела А примет вид произведения, возможно, что с готовым знаменателем. Если нет, то можно использовать методику примера 3. Главное не забыть записать окончательный ответ в виде е^А (см. рис.5).

Видео по теме

Источники:

  • вычислить предел функции не пользуясь правилом лопиталя в 2019

Инструкция

Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.

У есть ряд свойств, некоторые из которых представляют собой . Ниже представлены основные из них.
- одна величина имеет только один предел;

Предел постоянной величины равен величине этой постоянной;

Предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

Предел произведения равен произведению пределов: lim(xy)=lim x * lim y

Постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

Предел частного равен частному пределов: lim(x/y)=lim x / lim y.

В задачах с пределами встречаются как числовые выражения, так и этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите :
lim 3+1/n/1+1/n=3

При решении на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

Видео по теме

Расчет пределов функций - фундамент математического анализа, которому посвящено немало страниц в учебниках. Однако подчас не понятно не только определение, но и сама суть предела. Говоря простым языком, предел - это приближение одной переменной величины, которая зависит от другой, к какому-то конкретному единственному значению по мере изменения этой другой величины. Для успешного вычисления достаточно держать в уме простой алгоритм решения.

  • Правило Лопиталя и раскрытие неопределённостей
  • Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
  • Раскрытие неопределённостей вида "ноль умножить на бесконечность"
  • Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
  • Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей значительно упрощается с помощью правила Лопиталя.

Суть правила Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Вообще, под правилами Лопиталя понимаются несколько теорем, которые могут быть переданы в следующей одной формулировке.

Правило Лопиталя . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки , за исключением, может быть, самой точки , причём в этой окрестности

(1)

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

В равенстве (1) величина , к которой стремится переменная, может быть либо конечным числом, либо бесконечностью, либо минус бесконечностью.

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить

x =2 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Если предел отношения производных представляет собой неопределённость вида 0/0 или ∞/∞, то можно снова применить правило Лопиталя, т.е. перейти к пределу отношения вторых производных, и т.д.

Пример 5. Вычислить

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

Пусть при $x\to a$ функции $f(x)$ и $\varphi(x)$ обе бесконечно малые или обе бесконечно большие. Тогда их отношение не определено в точке $x=a$ , и в этом случае говорят, что оно представляет собой неопределенность типа $\left[\frac{0}{0}\right]$ или соответственно. Это отношение может иметь конечный или бесконечный предел в точке $x=a$ . Нахождение этого предела называется раскрытием неопределенности.

t_E1_p217_1
Теорема (Теорема Лопиталя-Бернулли.)
Пусть в некоторой окрестности $P$ точки $x=a$ функции $f(x)$ и $g(x)$ дифференцируемы всюду, кроме, может быть, самой точки $x=a$ , и пусть $g"(x)\neq0$ на $P$ . Если функции $f(x)$ и $\varphi(x)$ являются одновременно либо бесконечно малыми, либо бесконечно большими при $x\to a$ и при этом существует предел отношения $\frac{f"(x)}{\varphi"(x)}$ их производных при $x\to a$ , то тогда существует также и предел отношения $\frac{f(x)}{g(x)}$ самих функций, причем

(1)

\begin{align} \lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}. \end{align}

Правило () применимо и в случае, когда $a=\infty$ .

m_KR_p156_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$ .)
В силу теоремы () существует общий способ нахождения предела отношений двух функций, основанный на равенстве
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}.$$
Этот способ называется правилом Лопиталя .
Если для производных $f"(x)$ и $g"(x)$ выполняются условия теоремы (), то правило Лопиталя можно применять повторно:
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}=\lim\limits_{x\to a}\frac{f""(x)}{g""(x)}.$$
При этом на каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приемами вычисления пределов.

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}.$$
Используя формулу (), получаем: $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}=\left[\frac{0}{0}\right]=\lim\limits_{x\to0}\frac{2e^{2x}}{\frac{1}{1+25x^2}\cdot5}=\frac{2}{5},$$ поскольку $e^{2x}\to1$ и $\frac{1}{1+25x^2}\to1$ при $x\to0$ .

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to\infty}\frac{\ln2x}{x^3}.$$
Применяя дважды формулу (), получаем: $$\lim\limits_{x\to+\infty}\frac{\ln^2x}{x^3}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{\frac{2\ln x}{x}}{3x^2}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\ln x}{x^3}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{3x^2}=0.$$

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}.$$
Используем формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to 0}\frac{\frac{1}{\cos^2x}-\cos x}{3x^2}=\frac{1}{3}\lim\limits_{x\to0}\frac{1-\cos^3x}{x^2\cos^2x}.$$
Освободим знаменатель дроби от множителя $\cos^2x$ , поскольку он имеет предел $1$ при $x\to0$ . Развернем стоящую в числителе разность кубов и освободим числитель от сомножителя $(1+\cos x+\cos^2x)$ , имеющего предел $3$ при $x\to0$ . После этих упрощений получаем $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}.$$
Применим снова формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}=\lim\limits_{x\to0}\frac{\sin x}{2x}.$$
Используя первый замечательный предел, получаем окончательный ответ $\frac{1}{2}$ , уже не прибегая к правилу Лопиталя.

m_E1_p219_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left$ .)
Для вычисления $\lim\limits_{x\to a}f(x)g(x)$ , где $f(x)$ — бесконечно малая, а $g(x)$ — бесконечно большая функции при $x\to a$ , следует преобразовать произведение к виду $\frac{f(x)}{1/g(x)}$ (неопределенность типа $\left[\frac{0}{0}\right]$ ) или к виду $\frac{g(x)}{1/f(x)}$ (неопределенность типа $\left[\frac{\infty}{\infty}\right]$ ) и далее использовать правило Лопиталя.

e_E1_p219_1

Пример
Найти $$\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}.$$
Имеем: $$\begin{array}{c}\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}=\left=\lim\limits_{x\to1}\frac{\sin(x-1)}{\cot\frac{\pi x}{2}}=\left[\frac{0}{0}\right]=\\=\lim\limits_{x\to1}\frac{\cos(x-1)}{-\frac{\pi}{2}\frac{1}{\sin^2\frac{\pi x}{2}}}=-\frac{2}{\pi}\lim\limits_{x\to1}\cos(x-1)\sin^2\frac{\pi x}{2}=-\frac{2}{\pi}.\end{array}$$

m_E1_p220_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left[\infty-\infty\right]$ .)
Для вычисления $\lim\limits_{x\to a}(f(x)-g(x))$ , где $f(x)$ и $g(x)$ — бесконечно большие функции при $x\to a$ , следует преобразовать разность к виду $f(x)\left(1-\frac{g(x)}{f(x)}\right)$ , затем раскрыть неопределенность $\frac{g(x)}{f(x)}$ типа $\left[\frac{\infty}{\infty}\right]$ . Если $\lim\limits_{x\to a}\frac{g(x)}{f(x)}\neq1$ , то $\lim\limits_{x\to a}(f(x)-\varphi(x))=\infty$ . Если же $\lim\limits_{x\to a}\frac{\varphi(x)}{f(x)}=1$ , то получаем неопределенность типа $[\infty\cdot0]$ , рассмотренную ранее.

e_E1_p220_1

Пример
Найти $$\lim\limits_{x\to+\infty}(x-\ln^3x).$$
Имеем: $$\lim\limits_{x\to+\infty}(x-\ln^3x)=[\infty-\infty]=\lim\limits_{x\to+\infty}x\left(1-\frac{\ln^3x}{x}\right).$$
Так как $$\begin{array}{c}\lim\limits_{x\to+\infty}\frac{\ln^3x}{x}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{3\ln^2x\cdot\frac{1}{x}}{1}=3\lim\limits_{x\to+\infty}\frac{\ln^2x}{x}=\\=3\lim\limits_{x\to+\infty}\frac{2\ln x\cdot\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{\ln x}{x}=6\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{1}{x}=0,\end{array}$$ то $$\lim\limits_{x\to+\infty}(x-\ln^3x)=+\infty.$$

m_E1_p221_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left$ , $\left[\infty^0\right]$ , $\left$ .)
Во всех трех случаях имеется в виду вычисление предела выражения $\left(f(x)\right)^{g(x)}$ , где $f(x)$ есть в первом случае бесконечно малая, во втором случае — бесконечно большая, в третьем случае — функция, имеющая предел равный единице. Функция же $g(x)$ в первых двух случаях является бесконечно малой, а в третьем случае — бесконечно большой.
Логарифмируя выражение $\left(f(x)\right)^{g(x)}$ , получим равенство
$$\ln y=g(x)\ln f(x).$$
Найдем предел $\ln y$ , после чего найдем предел $y$ . Во всех трех случаях $\ln y$ является неопределенностью типа $$ , метод раскрытия которой изложен ранее.

e_E1_p221_1

Пример
Найти $$\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}.$$
Введем обозначение $y=\left(1+\frac{1}{x}\right)^{2x}$ . Тогда $\ln y=2x\ln\left(1+\frac{1}{x}\right)$ является неопределенностью $[\infty\cdot0]$ . Преобразуя выражение $\ln y$ к виду $\ln y=2\frac{\ln\left(1+\frac{1}{x}\right)}{1/x}$ , находим по правилу Лопиталя $$\lim\limits_{x\to+\infty}\ln y=2\lim\limits_{x\to+\infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}=2\lim\limits_{x\to+\infty}\frac{1}{1+\frac{1}{x}}=2.$$
Следовательно, $$\lim\limits_{x\to+\infty}y=\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}=e^2.$$