Магнитный момент. Магнитный момент – фундаментальное свойство элементарных частиц

; элементарным источником магнетизма считают замкнутый ток). Магнитными свойствами обладают элементарные частицы , атомные ядра , электронные оболочки атомов и молекул . Магнитный момент элементарных частиц (электронов , протонов , нейтронов и других), как показала квантовая механика , обусловлен существованием у них собственного механического момента - спина .

Магнитный момент
m → = I S n → {\displaystyle {\vec {m}}=IS{\vec {n}}}
Размерность L 2 I
Единицы измерения
СИ ⋅ 2
Примечания
векторная величина

Магнитный момент измеряется в ⋅ 2 , или в Вб *м, или Дж /Тл (СИ), либо эрг /Гс (СГС), 1 эрг/Гс = 10 −3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора .

Формулы для вычисления магнитного момента

В случае плоского контура с электрическим током магнитный момент вычисляется как

m = I S n {\displaystyle \mathbf {m} =IS\mathbf {n} } ,

где I {\displaystyle I} - сила тока в контуре, S {\displaystyle S} - площадь контура, n {\displaystyle \mathbf {n} } - единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика : если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из:

m = I 2 ∮ ⁡ [ r , d l ] {\displaystyle \mathbf {m} ={I \over 2}\oint [\mathbf {r} ,d\mathbf {l} ]} ,

где r {\displaystyle \mathbf {r} } - радиус-вектор , проведенный из начала координат до элемента длины контура d l {\displaystyle d\mathbf {l} } .

В общем случае произвольного распределения токов в среде:

m = 1 2 ∫ V [ r , j ] d V {\displaystyle \mathbf {m} ={1 \over 2}\int \limits _{V}[\mathbf {r} ,\mathbf {j} ]dV} ,

где j {\displaystyle \mathbf {j} } -

Различные среды при рассмотрении их магнитных свойств называют магнетиками .

Все вещества в той или иной мере взаимодействуют с магнитным полем. У некоторых материалов магнитные свойства сохраняются и в отсутствие внешнего магнитного поля. Намагничивание материалов происходит за счет токов, циркулирующих внутри атомов – вращения электронов и движения их в атоме. Поэтому намагничивание вещества следует описывать при помощи реальных атомных токов, называемых амперовскими токами.

В отсутствие внешнего магнитного поля магнитные моменты атомов вещества ориентированы обычно беспорядочно, так что создаваемые ими магнитные поля компенсируют друг друга. При наложении внешнего магнитного поля атомы стремятся сориентироваться своими магнитными моментами по направлению внешнего магнитного поля, и тогда компенсация магнитных моментов нарушается, тело приобретает магнитные свойства – намагничивается. Большинство тел намагничивается очень слабо и величина индукции магнитного поля B в таких веществах мало отличается от величины индукции магнитного поля в вакууме . Если магнитное поле слабо усиливается в веществе, то такое вещество называется парамагнетиком :

( , , , , , , Li, Na);

если ослабевает, то это диамагнетик :

(Bi, Cu, Ag, Au и др.).

Но есть вещества, обладающие сильными магнитными свойствами. Такие вещества называются ферромагнетиками :

(Fe, Co, Ni и пр.).

Эти вещества способны сохранять магнитные свойства и в отсутствие внешнего магнитного поля, представляя собой постоянные магниты.

Все тела при внесении их во внешнее магнитное поле намагничиваются в той или иной степени, т.е. создают собственное магнитное поле, которое накладывается на внешнее магнитное поле.

Магнитные свойства вещества определяются магнитными свойствами электронов и атомов.

Магнетики состоят из атомов, которые, в свою очередь, состоят из положительных ядер и, условно говоря, вращающихся вокруг них электронов.

Электрон, движущийся по орбите в атоме эквивалентен замкнутому контуру с орбитальным током :

где е – заряд электрона, ν – частота его вращения по орбите:

Орбитальному току соответствует орбитальный магнитный момент электрона

, (6.1.1)

где S – площадь орбиты, – единичный вектор нормали к S , – скорость электрона. На рисунке 6.1 показано направление орбитального магнитного момента электрона.

Электрон, движущийся по орбите, имеет орбитальный момент импульса , который направлен противоположно по отношению к и связан с ним соотношением

где m – масса электрона.

Кроме того, электрон обладает собственным моментом импульса , который называется спином электрона

, (6.1.4)

где , – постоянная Планка

Спину электрона соответствует спиновый магнитный момент электрона , направленный в противоположную сторону:

, (6.1.5)

Величину называют гиромагнитным отношением спиновых моментов

МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магн. свойства системы заряж. частиц (или отд. частицы) и определяющая наряду с др. мультипольными моментами (дипольным электрич. моментом, квадрупольным моментом и т. д., см. Мулътиполи )взаимодействие системы с внеш. эл--магн. полями и с др. подобными системами.

Согласно представлениям классич. , магн. поле создаётся движущимися электрич. . Хотя совр. теория не отвергает (и даже предсказывает) существование частиц с магн. зарядом (магнитных монополей) , такие частицы пока экспериментально не наблюдались и в обычном веществе отсутствуют. Поэтому элементарной характеристикой магн. свойств оказывается именно М. м. Система, обладающая М. м. (аксиальный вектор), на больших расстояниях от системы создаёт магн. поле


(- радиус-вектор точки наблюдения). Аналогичный вид имеет электрич. поле диполя, состоящего из двух близко расположенных электрич. зарядов противоположного знака. Однако, в отличие от электрич. дипольного момента. М. м. создаётся не системой точечных "магн. зарядов", а электрич. токами, текущими внутри системы. Если замкнутый электрич. ток течёт в ограниченном объёме V , то создаваемый им М. м. определяется ф-лой

В простейшем случае замкнутого кругового тока I , текущего вдоль плоского витка площади s, , причём вектор М. м. направлен вдоль правой нормали к витку.

Если ток создаётся стационарным движением точечных электрич. зарядов с массами , имеющими скорости , то возникающий М. м., как следует из ф-лы (1), имеет вид


где подразумевается усреднение микроскопич. величин по времени. Поскольку стоящее в правой части векторное произведение пропорционально вектору момента кол-ва движения частицы (предполагается, что скорости ), то вклады отд. частиц в М. м. и в момент кол-ва движения оказываются пропорциональными:

Коэффициент пропорциональности е/2тс наз. ; эта величина характеризует универсальную связь между магн. и механич. свойствами заряж. частиц в классич. электродинамике. Однако движение элементарных носителей заряда в веществе (электронов) подчиняется законам , вносящей коррективы в классич. картину. Помимо орбитального механич. момента кол-ва движения L электрон обладает внутренним механич. моментом - спином . Полный М. м. электрона равен сумме орбитального М. м. (2) и спинового М. м.

Как видно из этой ф-лы (вытекающей из релятивистского Дирака уравнения для электрона), гиромагн. отношение для спина оказывается ровно в два раза больше, чем для орбитального момента. Особенностью квантового представления о магн. и механич. моментах является также то, что векторы не могут иметь определённого направления в пространстве вследствие некоммутативности операторов проекции этих векторов на оси координат.

Спиновый М. м. заряж. частицы, определяемый ф-лой (3), наз. нормальным, для электрона он равен магнетону Бора. Опыт показывает, однако, что М. м. электрона отличается от (3) на величину порядка ( - постоянная тонкой структуры). Подобная добавка, называемая

Любых веществ. Источником формирования магнетизма, как утверждает классическая электромагнитная теория, являются микротоки, возникающие вследствие движения электрона по орбите. Магнитный момент - это непременное свойство всех без исключения ядер, атомных электронных оболочек и молекул.

Магнетизм, который присущ всем элементарным частицам, согласно обусловлен наличием у них механического момента, называемого спином (собственным механическим импульсом квантовой природы). Магнитные свойства атомного ядра складываются из спиновых импульсов составных частей ядра - протонов и нейтронов. Электронные оболочки (внутриатомные орбиты) тоже имеют магнитный момент, который составляет сумма магнитных моментов находящихся на ней электронов.

Иначе говоря, магнитные моменты элементарных частиц и обусловлены внутриатомным квантомеханическим эффектом, известным как спиновой импульс. Данный эффект аналогичен угловому моменту вращения вокруг собственной центральной оси. Спиновой импульс измеряется в постоянной Планка - основной константе квантовой теории.

Все нейтроны, электроны и протоны, из которых, собственно, и состоит атом, согласно Планку, обладают спином, равным ½ . В структуре атома электроны, вращаясь вокруг ядра, помимо спинового импульса, имеют еще и орбитальный угловой момент. Ядро, хоть и занимает статичное положение, тоже обладает угловым моментом, который создается эффектом ядерного спина.

Магнитное поле, которое генерирует атомный магнитный момент, определяется различными формами этого углового момента. Наиболее заметный вклад в создание вносит именно спиновой эффект. По принципу Паули, согласно которому два тождественных электрона не могут пребывать одновременно в одинаковом квантовом состоянии, связанные электроны сливаются, при этом их спиновые импульсы приобретают диаметрально противоположные проекции. В этом случае магнитный момент электрона сокращается, что уменьшает магнитные свойства всей структуры. В некоторых элементах, имеющих четное число электронов, этот момент уменьшается до нулевой отметки, и вещества перестают обладать магнитными свойствами. Таким образом, магнитный момент отдельных элементарных частиц оказывает непосредственное влияние на магнитные качества всей ядерно-атомной системы.

Ферромагнитные элементы с нечетным количеством электронов всегда будут обладать ненулевым магнетизмом за счет непарного электрона. В таких элементах соседние орбитали перекрываются, и все спиновые моменты непарных электронов принимают одинаковую ориентацию в пространстве, что приводит к достижению наименьшего энергетического состояния. Этот процесс называется обменным взаимодействием.

При таком выравнивании магнитных моментов ферромагнитных атомов возникает магнитное поле. А парамагнитные элементы, состоящие из атомов с дезориентированными магнитными моментами, не имеют собственного магнитного поля. Но если воздействовать на них внешним источником магнетизма, то магнитные моменты атомов выровняются, и эти элементы тоже приобретут магнитные свойства.

При помещении во внешнее поле вещество может реагировать на это поле и само становиться источником магнитного поля (намагничиваться). Такие вещества называют магнетиками (сравните с поведением диэлектриков в электрическом поле). По магнитным свойствам магнетики разделяются на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Разные вещества намагничиваются по-разному. Магнитные свойства вещества определяются магнитными свойствами электронов и атомов. Большая часть веществ намагничивается слабо - это диамагнетики и парамагнетики. Некоторые вещества в обычных условиях (при умеренных температурах) способны намагничиваться очень сильно - это ферромагнетики.

У многих атомов результирующий магнитный момент равен нулю. Вещества, состоящие из таких атомов, и являются диамагиетиками. К ним, например, относятся азот, вода, медь, серебро, поваренная соль NaCl, диоксид кремния Si0 2 . Вещества же, у которых результирующий магнитный момент атома отличен от нуля, относятся к парамагнетикам. Примерами парамагнетиков являются: кислород, алюминий, платина.

В дальнейшем, говоря о магнитных свойствах, будем иметь в виду в основном диамагнетики и парамагнетики, а свойства небольшой группы ферромагнетиков иногда будем оговаривать особо.

Рассмотрим сначала поведение электронов вещества в магнитном поле. Будем считать для простоты, что электрон вращается в атоме вокруг ядра со скоростью v по орбите радиуса г. Такое движение, которое характеризуется орбитальным моментом импульса, по сути является круговым током, который характеризуется соответственно орбитальным магнитным момен-

том р орб. Исходя из периода обращения по окружности Т = - имеем, что

произвольную точку орбиты электрон в единицу времени пересекает -

раз. Поэтому круговой ток, равный прошедшему через точку в единицу времени заряду, дается выражением

Соответственно, орбитальный магнитный момент электрона по формуле (22.3) равен

Помимо орбитального момента импульса электрон имеет также собственный момент импульса, называемый спином . Спин описывается законами квантовой физики и является неотъемлемым свойством электрона - как масса и заряд (см. подробнее в разделе квантовой физики). Собственному моменту импульса соответствует собственный (спиновый) магнитный момент электрона р сп.

Магнитным моментом обладают и ядра атомов, однако эти моменты в тысячи раз меньше моментов электронов, и ими можно обычно пренебречь. В результате суммарный магнитный момент магнетика Р т равен векторной сумме орбитальных и спиновых магнитных моментов электронов магнетика:

Внешнее магнитное поле действует на ориентацию частиц вещества, имеющих магнитные моменты (и микротоков), в результате чего вещество намагничивается. Характеристикой этого процесса является вектор намагниченности J , равный отношению суммарного магнитного момента частиц магнетика к объему магнетика AV :

Намагниченность измеряется в А/м.

Если магнетик поместить во внешнее магнитное полеВ 0 , то в результате

намагничивания возникнет внутреннее поле микротоков В, так что результирующее поле будет равным

Рассмотрим магнетик в виде цилиндра с основанием площадью S и высотой /, помещенный в однородное внешнее магнитное ноле с индукцией В 0 . Такое поле может быть создано, например, с помощью соленоида. Ориентация микротоков во внешнем ноле становится упорядоченной. При этом поле микротоков диамагнетиков направлено противоположно внешнему нолю, а иоле микротоков парамагнетиков совпадает по направлению с внешним

В любом сечении цилиндра упорядоченность микротоков приводит к следующему эффекту (рис. 23.1). Упорядоченные микротоки внутри магнетика компенсируются соседними микротоками, а вдоль боковой поверхности текут нескомпенсированные поверхностные микротоки.

Направление этих нескомпенсированных микротоков параллельно (или антипараллельно) току, текущему в соленоиде, создающем внешнее ноле. В целом же они Рис. 23.1 дают суммарный внутренний ток Этот поверхностный ток создает внутреннее иоле микротоков B v причем связь тока и поля может быть описана формулой (22.21) для ноля соленоида:

Здесь магнитная проницаемость принята равной единице, поскольку роль среды учтена введением поверхностного тока; плотность намотки витков соленоида соответствует одному на всю длину соленоида /: п = 1 //. При этом магнитный момент поверхностного тока определяется намагниченностью всего магнетика:

Из двух последних формул с учетом определения намагниченности (23.4) следует

или в векторном виде

Тогда из формулы (23.5) имеем

Опыт исследования зависимости намагниченности от напряженности внешнего поля показывает, что обычно поле можно считать несильным и в разложении в ряд Тейлора достаточно ограничиться линейным членом:

где безразмерный коэффициент пропорциональности х - магнитная восприимчивость вещества. С учетом этого имеем

Сравнивая последнюю формулу для магнитной индукции с известной формулой (22.1), получим связь магнитной проницаемости и магнитной восприимчивости:

Отметим, что значения магнитной восприимчивости для диамагнетиков и парамагнетиков малы и составляют обычно по модулю 10 "-10 4 (для диамагнетиков) и 10 -8 - 10 3 (для парамагнетиков). При этом для диамагнетиков х х > 0 и р > 1.