История народов. Пути расселения людей по генетическим данным Этические аспекты изучения


научн. сотр. лаборатории анализа генома Ин-та общей генетики
им. Н.И. Вавилова РАН

Генетическое разнообразие народов

Люди, живущие в разных концах Земли, отличаются по многим признакам: языковой принадлежности, культурным традициям, внешности, генетическим особенностям. Генетические характеристики народов зависят от их истории и образа жизни. Различия между ними возникают в изолированных популяциях, не обменивающихся потоками генов (т.е. не смешивающихся из-за географических, лингвистических или религиозных барьеров), за счет случайных изменений частот аллелей и процессов позитивного и негативного естественного отбора.

Случайное изменение частот аллелей в популяции называется генетическим дрейфом . Различия этих частот без действия каких-либо дополнительных факторов обычно невелики. При сокращении численности или отселении небольшой группы, дающей начало новой популяции, частоты аллелей могут сильно колебаться. В новой популяции они будут зависеть от генофонда основавшей ее группы (так называемый эффект основателя – все носители мутации получают ее от общего предка, у которого она возникла). С этим эффектом связывают повышенную частоту болезнетворных мутаций в некоторых этнических группах. Например, у японцев один из видов врожденной глухоты вызывается мутацией, возникшей однократно в прошлом и не встречающейся в других районах мира. У белых австралийцев глаукома связана с мутацией, завезенной переселенцами из Европы. У исландцев найдена мутация, повышающая риск развития рака и восходящая к общему прародителю. Аналогичная ситуация обнаружена у жителей о. Сардиния, но у них мутация другая, отличная от исландской. Среди русских, живущих в Башкортостане, из нескольких сотен мутаций, приводящих к фенилкетонурии, встречается преимущественно одна, что связывают с переселением в этот регион относительно небольшой группы русских, обладавших ею. Эффект основателя – одно из возможных объяснений отсутствия у американских индейцев разнообразия по группам крови AB0: у них преобладает группа 0 (первая), частота ее более 90%, а во многих популяциях – 100%. Так как Америка заселялась небольшими группами, пришедшими из Азии через перешеек, соединявший эти материки десятки тысяч лет назад, возможно, что в популяции, давшей начало коренному населению Нового Света, другие группы крови отсутствовали.

Слабовредные мутации могут долго поддерживаться в популяции, а вредные, значительно снижающие приспособленность индивида, отсеиваются отбором. Показано, что болезнетворные мутации, вызывающие тяжелые формы наследственных заболеваний, обычно эволюционно молоды. Давно возникшие мутации, длительное время сохраняющиеся в популяции, связаны с более легкими формами болезни.

Адаптация к условиям обитания фиксируется в ходе отбора благодаря случайно возникшим новым аллелям, повышающим приспособленность к данным условиям, или за счет изменения частот давно существующих аллелей. Разные аллели обусловливают варианты фенотипа, например цвета кожи или уровня холестерина крови. Частота аллеля, обеспечивающего адаптивный фенотип (например, темная кожа в зонах с интенсивным солнечным облучением), возрастает, поскольку его носители более жизнеспособны в данных условиях.

Адаптация к различным климатическим зонам проявляется как вариация частот аллелей комплекса генов, географическое распределение которых соответствует климатическим зонам. Однако наиболее заметный след в глобальном распределении генетических изменений оставили миграции народов, связанные с расселением от африканской прародины.

Происхождение и расселение человека

Ранее историю появления вида Homo sapiens на Земле реконструировали на основе палеонтологических, археологических и антропологических данных. В последние десятилетия появление молекулярно-генетических методов и исследования генетического разнообразия народов позволили уточнить многие вопросы, связанные с происхождением и расселением людей современного анатомического типа.

Молекулярно-генетические методы, используемые для восстановления демографической истории, сходны с лингвистической реконструкцией праязыка. Время, когда два родственных языка разделились (т.е. когда исчез их общий предковый праязык), оценивают по количеству различающихся слов, появившихся за период раздельного существования этих языков. Аналогично возраст предковой популяции, общей для двух современных народов, рассчитывают по количеству мутаций, накопившихся в ДНК их представителей. Чем больше различий в ДНК, тем больше времени прошло с момента разделения популяций. Так как скорость накопления мутаций в ДНК известна, по числу мутаций, отличающих две популяции, можно определить дату их расхождения (если предположить, что после разделения они больше не встречались и не смешивались).

Для датировки этого события используют нейтральные мутации, которые не влияют на жизнеспособность индивида и не подвержены действию естественного отбора. Они найдены во всех участках генома человека, но наиболее часто используют мутации в ДНК, содержащейся в клеточных органеллах – митохондриях. В оплодотворенной яйцеклетке присутствует только материнская митохондриальная ДНК (мтДНК), поскольку спермий свои митохондрии яйцеклетке не передает. Для филогенетических исследований мтДНК имеет особые преимущества. Во-первых, она не подвергается рекомбинации, как аутосомные гены, что значительно упрощает анализ родословных. Во-вторых, в клетке она содержится в количестве нескольких сотен копий и гораздо лучше сохраняется в биологических образцах.

Первым использовал мтДНК для реконструкции истории человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы мтДНК, полученные из крови людей из всех частей света, и на основе выявленных между ними различий построил филогенетическое древо человечества. Оказалось, что все современные мтДНК могли произойти от мтДНК общей праматери, жившей в Африке. Обладательницу предковой мтДНК тут же окрестили «митохондриальной Евой», что породило неверные толкования – будто все человечество произошло от одной-единственной женщины. На самом деле у «Евы» было несколько тысяч соплеменниц, просто их мтДНК до наших времен не дошли. Однако все они, без сомнения, оставили свой след: от них мы унаследовали генетический материал хромосом. Характер наследования в данном случае можно сравнить с семейным имуществом: деньги и земли человек может получить от всех предков, а фамилию – только от одного из них. Генетическим аналогом фамилии, передаваемой по женской линии, служит мтДНК, а по мужской – Y-хромосома, передаваемая от отца к сыну.

Изучение мтДНК и ДНК Y-хромосомы подтвердили африканское происхождение человека, позволили установить пути и даты его миграции на основе распространения различных мутаций у народов мира. По современным оценкам, вид H.sapiens появился в Африке более 100 тыс. лет назад, затем расселился в Азии, Океании и Европе. Позже всего была заселена Америка.

Вероятно, исходная предковая популяция H.sapiens состояла из небольших групп, ведущих жизнь охотников-собирателей. Мигрируя, люди несли с собой свои традиции, культуру и свои гены. Возможно, они также обладали и праязыком. Пока лингвистические реконструкции происхождения языков мира ограничены периодом 15–30 тыс. лет, и существование общего праязыка только предполагается. И хотя гены не определяют ни язык, ни культуру, в некоторых случаях генетическое родство народов совпадает и с близостью их языков и культурных традиций. Но есть и противоположные примеры, когда народы меняли язык и перенимали традиции своих соседей. Такая смена происходила чаще в районах контактов различных волн миграций или же в результате социально-политических изменений или завоеваний.

Конечно, в истории человечества популяции не только разделялись, но и смешивались. На примере линий мтДНК результаты такого смешения можно наблюдать у народов Волго-Уральского региона. Здесь столкнулись две волны расселения – европейская и азиатская. В каждой из них к моменту встречи на Урале в мтДНК успели накопиться десятки мутаций. У народов Западной Европы азиатские линии мтДНК практически отсутствуют. В Восточной Европе они встречаются редко: у словаков – с частотой 1%, у чехов, поляков и русских Центральной России – 2%. По мере приближения к Уралу частота их возрастает: у чувашей – 10%, у татар – 15%, у разных групп башкир – 65–90%. Закономерно, что у русских Волго-Уральского региона количество азиатских линий больше (10%), чем в Центральной России.

К изменениям условий среды (температуры, влажности, интенсивности солнечного облучения) человек приспосабливается за счет физиологических реакций (потоотделения, загара и т.п.). Однако в популяциях, проживающих долгое время в определенных климатических условиях, адаптации к ним накапливаются на генетическом уровне. Они меняют внешние признаки, сдвигают границы физиологических реакций (например, скорость сужения сосудов конечностей при охлаждении), «подстраивают» биохимические параметры (такие, как уровень холестерина в крови) к оптимальным для данных условий.

Климат. Один из наиболее известных расовых признаков – цвет кожи, пигментация которой у человека задана генетически. Пигментация защищает от повреждающего действия солнечного облучения, но не должна препятствовать получению минимальной дозы облучения, необходимой для образования витамина D, предотвращающего рахит. В северных широтах, где низкая интенсивность облучения, у людей кожа более светлая, а в экваториальной зоне – самая темная. Однако у обитателей затененных тропических лесов кожа светлее, чем можно было бы ожидать на данной широте, а у некоторых северных народов (чукчей, эскимосов), напротив, она относительно сильно пигментирована. В последнем случае это объясняется либо поступлением витамина D с пищей (рыбой и печенью морских животных), либо недавней в эволюционном масштабе миграцией северных групп из более низких широт.

Таким образом, интенсивность ультрафиолетового излучения действует как фактор отбора, приводя к географическим вариациям в цвете кожи. Светлая кожа – эволюционно более поздний признак и возникла за счет мутаций в нескольких генах, регулирующих выработку кожного пигмента меланина (ген рецептора меланинокортина MC1R и другие). Способность загорать также детерминирована генетически. Ею отличаются жители регионов с сильными сезонными колебаниями интенсивности солнечного излучения.

Известны связанные с климатическими условиями различия в строении тела. Это адаптации к холодному или теплому климату. Так, короткие конечности у жителей арктических областей (чукчей, эскимосов) уменьшают отношение поверхности тела к его массе и тем самым сокращают теплоотдачу. Обитатели жарких сухих регионов, например африканские масаи, напротив, отличаются длинными конечностями. У жителей влажного климата более широкие и плоские носы, а в сухом и более холодном климате носы длиннее, что способствует согреванию и увлажнению вдыхаемого воздуха.

Повышенное содержание гемоглобина в крови и усиление легочного кровотока служат приспособлением к высокогорным условиям. Такие особенности свойственны аборигенам Памира, Тибета и Анд. Все эти признаки определяются генетически, но степень их проявления зависит от условий развития в детстве: например, у андских индейцев, выросших на уровне моря, а затем переселившихся в высокогорные районы они менее выражены.

Типы питания. Некоторые генетические изменения связаны с разными типами питания. Среди них наиболее известна непереносимость молочного сахара (лактозы) – гиполактазия. У детенышей всех млекопитающих для усвоения лактозы вырабатывается фермент лактаза. По окончании вскармливания она исчезает из кишечного тракта детеныша. Отсутствие фермента у взрослых – исходный, предковый признак для человека.

Во многих азиатских и африканских странах, где взрослые традиционно не пьют молоко, после пятилетнего возраста лактаза не синтезируется, и потому употребление молока приводит к расстройству пищеварения. Однако большинство взрослых европейцев могут без вреда для здоровья пить молоко: синтез лактазы у них не прекращается из-за мутации в участке ДНК, регулирующем образование фермента. Эта мутация распространилась после появления молочного скотоводства 9–10 тыс. лет назад и встречается преимущественно у европейских народов. Более 90% шведов и датчан способны усваивать молоко, и лишь небольшая часть населения Скандинавии отличается гиполактазией. В России частота гиполактазии составляет около 30% для русских и более 60–80% для коренных народов Сибири и Дальнего Востока. Народы, у которых гиполактазия сочетается с молочным скотоводством, традиционно используют не сырое молоко, а кисломолочные продукты, в которых молочный сахар уже расщеплен бактериями.

Отсутствие сведений о генетических особенностях народов порой приводит к тому, что при гиполактазии людям, реагирующим на молоко расстройством пищеварения, которое принимают за кишечные инфекции, вместо необходимого изменения диеты предписывают лечение антибиотиками, ведущее к дисбактериозу.

Кроме употребления молока еще один фактор мог влиять на сохранение у взрослых синтеза лактазы. В присутствии лактазы молочный сахар способствует усвоению кальция, выполняя те же функции, что и витамин D. Возможно, именно поэтому у северных европейцев мутация, о которой идет речь, встречается чаще всего. Это пример генетической адаптации к взаимодействующим пищевым и климатическим факторам.

Еще несколько примеров. Эскимосы при традиционном питании обычно потребляют до 2 кг мяса в день. Переварить такие количества мяса можно лишь при сочетании определенных культурных (кулинарных) традиций, микрофлоры определенного типа и наследственных физиологических особенностей пищеварения.

У народов Европы встречается целиакия – непереносимость белка глутена, содержащегося в зернах ржи, пшеницы и других злаков. Она вызывает при потреблении в пищу злаков множественные нарушения развития и умственную отсталость. Заболевание в 10 раз чаще встречается в Ирландии, чем в странах континентальной Европы, вероятно, потому, что в ней пшеница и другие злаки традиционно не были основными продуктами питания.

У жителей Северноазиатского региона часто отсутствует фермент трегалаза, расщепляющий углеводы грибов. Эта наследственная особенность сочетается с культурной: в этих местах грибы считаются пищей оленей, не пригодной для человека.

Для жителей Восточной Азии характерна другая наследственная особенность обмена веществ. Известно, что многие монголоиды даже от небольших доз спиртного быстро пьянеют и могут получить сильную интоксикацию. Это связано с накоплением в крови ацетальдегида, образующегося при окислении алкоголя ферментами печени. Известно, что алкоголь окисляется в печени в два этапа: сначала превращается в токсичный ацетальдегид, а затем окисляется с образованием безвредных продуктов, которые выводятся из организма. Скорость работы ферментов первого и второго этапов (алкогольдегидрогеназы и ацетальдегидрогеназы) задается генетически. Для коренного населения Восточной Азии характерно сочетание «быстрых» ферментов первого этапа с «медленными» ферментами второго этапа. В этом случае при приеме спиртного этанол быстро перерабатывается в альдегид (первый этап), а его дальнейшее удаление (второй этап) происходит медленно. Такая особенность связана с сочетанием двух мутаций, влияющих на скорость работы упомянутых ферментов. Предполагается, что высокая частота этих мутаций (30–70%) есть результат адаптации к неизвестному пока фактору среды.

Приспособления к типу питания связаны с комплексами генетических изменений, не многие из которых пока детально изучены на уровне ДНК. Известно, что около 20–30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые пищевые вещества и лекарства, в частности амитриптилин, благодаря наличию двух или более копий гена, кодирующего один из видов цитохромов – ферментов, разлагающих чужеродные вещества, поступающие в организм с пищей. У других народов удвоение данного гена цитохрома встречается с частотой не более 3–5%, и распространены неактивные варианты гена (от 2–7% у жителей Европы и до 30% в Китае). Возможно, число копий гена увеличивается из-за особенностей диеты (использования больших количеств перца или съедобного растения тефф, составляющего до 60% пищевых продуктов в Эфиопии и нигде больше не распространенного в такой степени). Однако определить, где причина, а где следствие в настоящее время невозможно. Случайно ли увеличение в популяции носителей множественных генов позволило людям есть какие-то особые растения? Или, наоборот, употребление перца (или другой пищи, для усвоения которой необходим цитохром) послужило фактором отбора индивидов с удвоенным геном? Как тот, так и другой процесс могли иметь место в эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы взаимодействуют. Употребление той или иной пищи становится возможным лишь при наличии определенных генетических предпосылок, а диета, ставшая традиционной, действует как фактор отбора, влияя на частоту аллелей и распространение в популяции наиболее адаптивных при таком питании генетических вариантов.

Традиции обычно меняются медленно. Например, переход от собирательства к земледелию и соответственно смена диеты и образа жизни осуществлялись на протяжении десятков поколений. Относительно медленно происходят и сопровождающие такие события изменения генофонда популяций. Частоты аллелей могут колебаться на 2–5% за поколение, из-за чего одни аллели постепенно накапливаются, а другие – исчезают. Однако другие факторы, например эпидемии, часто связанные с войнами и социальными кризисами, могут в несколько раз поменять частоты аллелей в популяции на протяжении жизни одного поколения за счет резкого снижения численности популяции. Так, завоевание Америки европейцами привело к гибели до 90% коренного населения, и эпидемии оказали большее значение, чем войны.

Устойчивость к инфекционным заболеваниям

Оседлый образ жизни, развитие земледелия и скотоводства, повышение плотности населения способствовали распространению инфекций и появлению эпидемий. Так, туберкулез – изначально болезнь крупного рогатого скота – человек приобрел после одомашнивания животных. С ростом городов заболевание стало эпидемически значимым, что сделало актуальной устойчивость к инфекции, также имеющей генетический компонент.

Наиболее подробно изученный пример подобной устойчивости –распространение в тропической и субтропической зонах болезни серповидноклеточной анемии, названной так из-за серповидной формы эритроцитов (определяется при микроскопическом анализе мазка крови). Эта наследственная болезнь обусловлена мутацией в гене гемоглобина, приводящей к нарушению его функций. Носители мутации оказались устойчивыми к малярии. В зонах распространения заболевания наиболее адаптивно гетерозиготное состояние: гомозиготы с мутантным гемоглобином погибают от анемии, гомозиготы по нормальному гену болеют малярией, а гетерозиготы, у которых анемия проявляется в мягкой форме, защищены от малярии.

Такие примеры показывают, что платой за повышенную адаптивность гетерозигот может быть гибель на порядок реже встречающихся гомозигот по болезнетворной мутации, которые неизбежно появляются при увеличении ее популяционной частоты.

Еще один пример генетической детерминации восприимчивости к инфекциям – так называемые прионные заболевания. К ним относится губчатая болезнь мозга рогатого скота (коровье бешенство), вспышка которого среди рогатого скота наблюдалась после появления новой технологии переработки костной муки, идущей на корм животным. Инфекция с очень небольшой частотой передается человеку через мясо больных животных. Немногие заболевшие люди оказались носителями редкой мутации, раньше считавшейся нейтральной.

Существуют мутации, защищающие от инфицирования вирусом иммунодефицита человека либо замедляющие развитие болезни после заражения. Две таких мутации встречаются во всех популяциях (с частотой от 0 до 70%), а еще одна – только в Европе (частота – 5–18%). Предполагается, что эти мутации распространились в прошлом в связи с тем, что обладают защитным эффектом 2 и в отношении других эпидемических заболеваний.

Развитие цивилизации и генетические изменения

Кажется удивительным тот факт, что питание бушменов – охотников-собирателей, живущих в Южной Африке, – оказалось полностью соответствующим рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов, микроэлементов и калорий. Биологически человек и его непосредственные предки на протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей.

Изменения традиционного питания и образа жизни отражаются на здоровье людей. Например, афроамериканцы чаще, чем евроамериканцы, болеют гипертонией. У северных народов, традиционная диета которых была богата жирами, переход на европейскую высокоуглеводную диету способствует развитию диабета и других заболеваний.

Преобладавшие ранее представления о том, что с развитием производящего хозяйства (земледелия и скотоводства) здоровье и питание людей неуклонно улучшается, сейчас опровергнуто. После появления земледелия и скотоводства значительное распространение получили многие заболевания, редко встречавшиеся у древних охотников-собирателей или вообще им неизвестные. Сократилась продолжительность жизни (от 30–40 лет до 20–30), в 2–3 раза увеличилась рождаемость и одновременно выросла абсолютная детская смертность, хотя относительный уровень ее, видимо не изменился: лишь 40% живорожденных детей доживали до репродуктивного возраста. Костные останки раннеземледельческих народов гораздо чаще имеют признаки перенесенной анемии, недоедания, различных инфекций, чем у доземледельческих народов. Лишь в Средневековье наступил перелом, и средняя продолжительность жизни стала увеличиваться. Заметное улучшение здоровья населения и снижение детской смертности в развитых странах связано с появлением современной медицины.

Сегодня для земледельческих народов характерны высокоуглеводная и высокохолестериновая диета, использование соли, снижение физической активности, оседлый образ жизни, высокая плотность населения, усложнение социальной структуры. Приспособление популяций к каждому из этих факторов сопровождается генетическими изменениями: адаптивных аллелей становится больше, а неадаптивных меньше, поскольку их носители менее жизнеспособны или менее плодовиты. Например, низкохолестериновая диета охотников-собирателей делает адаптивной для них способность к интенсивному поглощению холестерина из пищи, но при современном образе жизни она становится фактором риска атеросклероза и сердечно-сосудистых заболеваний. Эффективное усвоение соли, бывшее полезным при ее недоступности, в современных условиях превращается в фактор риска гипертонии. При рукотворном преобразовании среды обитания человека популяционные частоты аллелей меняются так же, как и при естественной адаптации.

Рекомендации врачей по поддержанию здоровья – физическая активность, прием витаминов и микроэлементов, ограничение соли и т.п. – по сути, искусственно воссоздают условия, в которых человек жил большую часть времени своего существования как биологического вида.

Вероятно, что определенные адаптации могли быть связаны и с коллективным образом жизни человека. Так, возросшая частота депрессий в современных обществах западного типа вызвана утратой поддержки родовой группы. В ряде исследований показано, что с разрушением родовой системы снижается выживаемость детей, повышается риск развития заболеваний. Согласно статистике, существенно различается частота депрессий в разных странах (в европейских она в пять раз выше), а частота шизофрении везде примерно одинакова. Как считают специалисты, генетическая детерминация депрессии довольно велика (30–40%). Можно предположить, что гены, ответственные за предрасположенность к депрессии, в обществах, где влияние коллектива еще велико, не столь опасны, как в обществе, где человек остается один на один со своими проблемами.

Итак, на формирование генофондов этнических групп влияет множество процессов: миграции и смешение народов, накопление мутаций в изолированных группах, адаптация популяций к условиям среды. Межпопуляционные (географические, языковые и иные) барьеры способствуют накоплению генетических различий, которые, однако, между соседями обычно не очень значительны. Географическое распределение этих различий отражает континуум меняющихся признаков и меняющихся генофондов. Генетические различия не подразумевают превосходства какой-либо расы, этнической или иной группы, образованной по какому-либо признаку (типу хозяйства или социальной организации). Напротив, они подчеркивают эволюционную ценность разнообразия, позволившую человечеству не только освоить все климатические зоны Земли, но и приспособиться к тем значительным изменениям среды, которые возникли в результате деятельности самого человека.

Литература

Генофонд и геногеография народонаселения России и сопредельных стран / Под ред. Ю.Г. Рычкова. – СПб., 2000.

Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. – СПб., 1997.

Лимборская С.А., Хуснутдинова Э.К., Балановская Е.В. Этногеномика и геногеография народов Восточной Европы. – М., 2002.

Степанов В.А. Этногеномика народов Северной Евразии – Томск, 2002.

Evolution in health and disease / Ed. S.C. Stearns. – N.Y., 1999.

Cavalli-Sforza L.L., Menozzi P., Piazza A. History and Geography of Human Genes, Princeton. – N.Y., 1994.

Кавалли-Сфорца Л.Л. Гены, народы, языки // В мире науки. 1992.

Уилсон А.К., Канн Р.Л. Недавнее африканское происхождение людей // В мире науки. 1992.

Боринская С.А., Хуснутдинова Э.К. Этногеномика: история с географией // Человек. 2002. № 1. С.19–30.

Хуснутдинова Э.К., Боринская С.А. Геномная медицина – медицина XXI века // Природа. 2002. № 12. С.3–8.

Геном человека: нити судьбы // Химия и жизнь. 1998. № 4. C.27–30.

Янковский Н.К., Боринская С.А. Наша история, записанная в ДНК // Природа. 2001. № 6. С.10–17.

Эти и другие научно-популярные статьи представлены на сайте www.vigg.ru в разделе «Программа «Геном человека».

Поразительное единообразие гомеозисных генов у чер­вей, мух, кур и людей еще раз подчеркивает общность на­шего происхождения от единого предка. Обнаружить это сходство нам позволило знание генетического кода - язы­ка, на котором записаны прописи белков в генах. Мы срав­нили «тексты» генов и обнаружили в них общие «слова». Точно так же, но в иной исторической перспективе, срав­нение языков дает возможность проследить общие корни разных народов. Например, итальянский, французский, испанский и румынский языки происходят от латинского языка, на котором говорили в Древнем Риме. Историю ми­грации народов можно изучить, если объединить в исследо­вании лингвистический и генетический анализ родствен­ных связей между людьми. Напрасно историки сетуют на отсутствие исторических документов, свидетельствующих о переселении того или иного народа в далеком прошлом. Такие документы есть. Это гены и язык, на котором мы го­ворим. По причинам, которые я постепенно буду раскры­вать в этой главе, хромосома 13 является отличной отправ­ной точкой для разговора о генеалогии человечества.

В 1786 году английский судья в Калькутте сэр Уильям Джонс (William Jones) созвал съезд Королевского азиат­ского общества (Royal Asiatic Society) и объявил о своем от­крытии: древнеиндийский язык санскрит является праро­дителем латинского и греческого языков. Благодаря тому что Джонс владел многими языками, он обнаружил сход­

ство санскрита также с кельтским, готским и персидским языками. Он предположил, что все эти языки имели общее происхождение. Джонс пришел к такому заключению по той же причине, по которой современные генетики сдела­ли вывод о существовании 530 млн лет назад округленных плоских червей - предков большинства современных жи­вотных. Этой причиной явилось сходство слов. Например, слово «три» звучит как «tres» в латинском, «treis» - в грече­ском и «tryas» - в санскрите. Безусловно, в отличие от ге­нетического «языка» в разговорных языках гораздо проще происходит заимствование слов у народов, которые живут на соприкасающихся территориях. Можно предположить, что слово «три» было занесено в санскрит из языков евро­пейских народов. Но дальнейшие исследования подтверди­ли правоту Джонса. Все эти народы на огромной террито­рии от Индии до Ирландии когда-то были одним народом и жили вместе на одной территории. Затем в ходе вековой истории миграций общий язык рассыпался на диалекты, которые стали самостоятельными языками.

Сравнив языки, мы даже можем предположить, какими были наши общие предки. Индоевропейцы примерно 8 ООО лет назад начали мигрировать из своей земли обетованной, которую некоторые считают современной Украиной, но, скорее, это была территория современной Турции (во всех индоевропейских языках есть общие корни слов, обозна­чающих холмы и быстрые горные потоки). Наши предки занимались земледелием и скотоводством - во всех языках есть общие слова, обозначающие урожай, коров, овец и со­бак. Если учесть, что согласно археологическим данным земледелие в те времена только зарождалось в так называе­мом перекрестке изобилия - Сирии и Месопотамии, - ста­новится понятным, что своему успеху в расселении на двух континентах наши предки обязаны владению передовой технологией тех времен - умением обрабатывать землю и выращивать урожай. Но разнесли ли они вместе со своим языком по дальним землям также свои гены? К этому во­просу мы еще вернемся чуть позже.

На родине индоевропейских народов - в Анатолии - сей­час говорят по-турецки, на языке, который не относится к индоевропейской группе и был занесен сюда позже дикими всадниками с бескрайних степей центральной Азии. Эти «алтайские» народы также владели передовой технологи­ей - они разводили и использовали лошадей, о чем свиде­тельствует не только история, но и их язык. У всех народов алтайской группы много общих слов, связанных с лошадьми. Третья большая языковая группа -уральская. На языках этой группы говорят народы севера России, Финляндии, Эстонии и, как ни странно, венгры. Расселение этих народов проис­ходило в несколько этапов, примерно в то же время, когда в Европе появились индоевропейцы. Вероятно, они тоже были обладателями какой-то передовой технологии, воз­можно, занимались разведением северных оленей. В клас­сической форме уральский язык сохранился сейчас только у самоедов - оленеводов северо-западной части России.

Но если мы копнем глубже, то найдем свидетельства того, что эти три группы языков - индоевропейская, алтай­ская и уральская - также сходятся к одному общему языку, на котором говорили народы Евразии примерно 15 ООО лет назад. Судя по общим корням во всех языках, это был народ охотников-собирателей, у которых еще не было домашних животных за исключением, возможно, собаки (волка). Нет общего мнения по поводу того, какие народы являются их прямыми потомками. Русские лингвисты Владислав Иллич- Свитыч и Агарон Долгопольский относили к афро-азиат­скому семейству также арабский язык и языки Северной Африки, тогда как Джозеф Гринберг (Joseph Greenberg) из Станфордского университета исключает эти языки, но до­бавляет к данному семейству языки коряков и чукчей, про­живающих на северо-восточной оконечности Азии. Иллич- Свитыч даже написал небольшую поэму на неизвестном древнем «ностратическом» языке. Корни и звучание слов были выведены теоретически, на основе сравнительного анализа афро-азиатского семейства языков.

Доказательством существования древнейшего языка на­ших пращуров служат отдельные слова и буквосочетания, ко­торые мало изменились за все эти тысячелетия. Например, в индоевропейских и уральских языках, а также монголь­ском, чукотском и эскимосском в слове «мне» присутствует звук «м», а в слове «ты» - звук «т». Множество таких приме­ров сводит к минимуму вероятность простого совпадения. Можно с уверенностью сказать, что португальский и корей­ский языки сходятся к общему предковому языку.

Каким был секрет успеха ностратического народа, мы, видимо, никогда не узнаем. Возможно, эти люди первые придумали использовать собак во время охоты или изобре­ли лук и стрелы. Возможно, причина ихуспеха была не столь материальной, а состояла в более совершенном обществен­ном укладе, например в принятии решений путем демокра­тического голосования. Распространившись на огромные территории, они не уничтожили коренные народы, жив­шие здесь до них. Достоверно известно, что баскский язык, некоторые языки Кавказа и исчезнувший этрусский язык не относятся к макросемейству ностратических языков, но зато есть четкие связи между этими языками и китайским, а также языком индейцев племени Навахо. Они образуют другое макросемейство языков на-дене. Мы вплотную по­дошли к одной спекулятивной идее. Известно, что баски, которые сейчас сохранились в Пиренейских горах (горы всегда были закоулками на путях великих переселений, где находили прибежище потомки давно исчезнувших на­родов), когда-то населяли гораздо большую территорию, о чем свидетельствуют названия местностей. Интересно, что эта территория совпадала с областью распростране­ния кроманьонской наскальной живописи. Являются ли баскский язык и язык навахо лингвистическими окамене- лостями первых кроманьонцев, которые вытеснили неан­дертальцев из Евразии? Являются ли носители этих языков прямыми потомками мезолитических людей, на смену ко­торым затем пришли люди неолита, говорящие на индоев­ропейских языках? Скорее всего, нет, но все же небольшая вероятность этого сохраняется.

В 1980-х годах великий итальянский генетик Луиджи Лука Кавалли-Сфорца (Luigi Luca Cavalli-Sforza), вдохнов­ленный открытиями лингвистов, задался очевидным во­просом: соответствуют ли языковые границы генетиче­ским? Границы распространения генов, безусловно, более размыты в результате смешанных браков. Отличия между немцами и французами в генетическом плане гораздо ме­нее очевидны, чем различия в языке.

Тем не менее некоторые закономерности начали про­являться. Собрав множество примеров «классического полиморфизма» генов в популяциях людей и обработав эти данные с помощью статистического метода основных компонентов, Кавалли-Сфорца обнаружил в Европе пять центров, из которых происходило распространение поли­морфных генов разных типов. Плавный градиент генети­ческого полиморфизма с юго-востока Европы в направле­нии северо-запада отображает путь расселения в Европу из Средней Азии земледельцев во времена неолита. На пуги генетического маршрута были обнаружены археологиче­ские свидетельства- стоянки древних земледельцев, ко­торые появились в Европе примерно 9 500 лет назад. Этот генетический тренд обуславливает 28% генетического по­лиморфизма у современных европейцев, /(ругой резкий градиент полиморфизма на северо-востоке Европы соот­ветствует расселению народов уральской языковой груп­пы. Влиянием расселения этих народов объясняется 22% варьирования генов у европейцев. Третий градиент, кото­рый вдвое слабее предыдущего, расходится концентриче­скими кругами от украинских и донских степей. Этот гра­диент соответствует расселению кочевников, пришедших в Европу за 3 ООО лет до нашей эры из междуречья Волги и Дона. Четвертая область генетического разнообразия представлена множеством вкраплений в Греции, Южной Италии и в Западной Турции и, вероятно, отображает рас­пространение античных греческих мегаполисов во втором и первом тысячелетиях до нашей эры. Наиболее интригу­ющим является едва вырисовывающийся пятый центр рас­пространения необычных генов в районе древней страны басков в Северной Испании и в Южной Франции. Это еще раз подтверждает тот факт, что баски являются древним донеолитическим народом, выстоявшим под напором ин­доевропейцев (Cavalli-Sforza L. 1998. The DNA revolution in population genetics. Trends in Genetics 14: 60-65).

Другими словами, генетика подтвердила лингвистиче­ские гипотезы о том, что расселение и миграции древних народов, вооруженных новыми технологиями, сыграли огромную роль в эволюции человечества. генетические гра­ницы не так резки, как лингвистические, благодаря чему генетический анализ позволяет раскрыть больше нюансов истории народов. Даже в пределах одной страны генетиче­ский полиморфизм часто совпадает с языковым. Например, в родной для Кавалли-Сфорца Италии есть островки гене­тического полиморфизма, которые соответствуют древней стране этрусков, Лигурии и Генуи, жители которых говорят на наречии, не относящемся к индоевропейскому семейству языков, а также древним греческим мегаполисам на юге Италии. Вывод прост: люди и их язык идут по земле вместе.

Археологи могут проследить время появления в Европе земледельцев неолита, кочевников и древних мадьяр. Но как это происходило? Они просто расширяли свои терри­тории или мигрировали? Повстречалось ли им на новых землях коренное население? Что произошло с коренным населением, были ли они все уничтожены или ассимилиро­вались с пришельцами? Или может пришельцы взяли себе в жены местных женщин, а мужчин убили? А может, рас­селялись не люди, а их культура находила все больше при­верженцев, и вместе с новыми технологиями распростра­нялся и язык? Все модели возможны. Например, в Америке XVIII века коренное население было почти полностью уни­чтожено европейцами как в генетическом, так и в лингви­стическом плане, тогда как в Мексике в XVII веке процесс больше напоминал смешение. В XIX веке в Индии широко распространился английский язык, но это практически не сопровождалось генетическим кровосмешением.

Генетический анализ позволяет нам лучше понять, какая из моделей экспансии больше применима к древним исто­рическим событиям. Плавный генетический градиент, на­правленный с юго-востока к северо-западу Европы лучше всего объясняется моделью диффузного проникновения в Европу первых земледельцев неолита. Гены земледельцев с юго-запада смешивались с генами коренного населения, по­этому генетический полиморфизм постепенно сглаживает­ся по мере продвижения на северо-запад. Это указывает на многочисленные смешанные браки между пришельцами и коренным населением. Кавалли-Сфорца предположил, что, вероятнее всего, мужчины-земледельцы брали себе в жены местных женщин из племен охотников и собирателей, но не наоборот. То же самое сейчас происходит в центральной Африке между чернокожими крестьянами и пигмеями, ве­дущими полудикий образ жизни в джунглях. Земледельцы, которые могли прокормить несколько жен и рассматрива­ли охотников как дикарей, никогда бы не позволили сво­им дочерям выйти замуж за дикого охотника, но были не прочь заиметь себе в жены красавицу-дикарку.

Вторжение более развитой цивилизации сопровожда­лось закреплением на территории нового языка. Браки между пришлыми мужчинами и коренными женщинами вели к смешению всех генов за исключением тех, которые находятся на хромосоме Y. Так произошло на территории современной Финляндии. Финны генетически почти не отличаются от соседних народов, исключение составляет лишь хромосома Y. Гены только этой хромосомы однознач­но указывают на североазиатское происхождение финнов. Когда-то в далеком прошлом на территории современной Финляндии с коренным индоевропейским населением про­изошло наслоение языка уральской группы и уральской Y- хромосомы. Весьма интересный факт был обнаружен в ходе популяционных генетических исследований. Оказалось, что скорость распространения генов митохондрий, пере­дающихся только по женской линии, во много раз превос­ходит скорость распространения мужских генов на хро­мосоме Y. Это связано с тем, что в человеческом обществе обычно жена уходила к мужу (или выкрадывалась) из своей семьи, а не наоборот (Jensen М. 1998. All about Adam. New Scientist, 11 July: 35-39).

Но какое отношение ко всему этому имеет хромосома 13? Так случилось, что на этой хромосоме оказался известный ген BRCA 2 , который тоже многое может рассказать о ге­неалогии людей. BRCA 2 был вторым по счету геном «рака молочной железы», обнаруженным в 1994 году. Довольно редкая мутация этого гена делает женщин несколько более предрасположенными к данному заболеванию. Ген был об­наружен в результате изучения нескольких исландских се­мей, в которых в ряде поколений женщины страдали раком груди. Исландия - это уникальная естественная генетиче­ская лаборатория, поскольку все ее население произошло от небольшой группы норвежцев, высадившихся здесь в 900-х годах нашей эры. Уровень иммиграции на протяже­нии последующих веков был низким. Поэтому родословная практически всех 270 ООО жителей острова начинается от тех нескольких тысяч норвежцев, появившихся здесь до на­ступления «малого ледникового периода» средних веков. Одиннадцать веков изоляции и опустошительные эпидемии XIV столетия сделали остров заповедным местом для охот­ников за генами. Несколько предприимчивых исландских генетиков, получивших образование в США, вернулись на родину и открыли частную клинику по выявлению родос­ловной исландских семей по генетическим маркерам.

В двух местных семьях частые случаи рака молочной железы прослеживались во многих поколениях вплоть до 1711 года. В обеих семьях была обнаружена одна и та же мутация - делеция (недостаток) пяти «букв» в тексте гена BRCA 2 после 999-й «буквы». Другая мутация в этом же гене - делеция 6 174-й «буквы» - характерна для потомков евреев ашкенази. Примерно 8% случаев рака молочной железы у евреек ашкенази в возрасте около 42 лет связаны с этой му­тацией, и еще 20% случаев связаны с мутацией в гене BRCA r который находится на хромосоме 17. И вновь генетиче­ские заболевания стали результатом продолжительного инбридинга, хотя и не в таких масштабах, как в Исландии.

Генетическая чистота евреев связана с многовековой прак­тикой неприятия иноверцев и отвержения тех, кто женил­ся на чужеземке. Наиболее последовательные иудеи, к ко­торым относятся евреи ашкенази, также стали объектом пристального изучения генетиков. В США даже был создан комитет по предупреждению генетических заболеваний евреев (the Committee for the Prevention of Jewish Genetic Disease), в задачи которого, в частности, входит генетиче­ский анализ крови у школьников. Впоследствии, когда дети вырастают, прежде чем разрешить им вступление в брак, брачные агенты запрашивают в базе данных результаты ана­лиза, где они хранятся под анонимными индивидуальными номерами каждого школьника. Если у обоих брачующихся будут обнаружены одинаковые мутации, ведущие к болез­ни Тея-Сакса (детское слабоумие) или муковисцидозу, то в браке молодым откажут. Практические результаты рабо­ты этого комитета, который остро критиковался в New York Times в 1993 году как «неоевгенический», впечатляют своей эффективностью. Муковисцидоз был практически искоре­нен у еврейского населения США (сведения приводились в Интернет-издании HMS Beagle: TheBiomednet Magazine, www. biomednet. com/hmsbeagle, issue 20, November 1997).

Таким образом, география распространения генов пред­ставляет не только академический интерес. Болезнь Тея- Сакса является результатом генетической мутации, которая довольно часто встречается у евреев ашкенази по причи­нам, о которых мы говорили при рассмотрении хромосо­мы 9. Мутация Тея-Сакса на одной хромосоме делает людей несколько более устойчивыми к туберкулезу, что отражает историю жизни и болезней этого народа. Скученные в гет­то на протяжении нескольких последних столетий, евреи ашкенази были особенно подвержены туберкулезу, поэтому не удивительно, что в их геноме накопились гены, препят­ствующие данному заболеванию. Хотя ценой этой защиты была повышенная смертность детей от генетического забо­левания.

До сих пор нет такого простого объяснения факта рас­пространения мутации на хромосоме 13 у ашкенази, результатом которой становится рак молочной железы. Скорее всего, у этого и у всех остальных расовых и этниче­ских особенностей генома есть свой практический смысл. Составление полной генетической карты мира позволит лучше понять тенденции и процессы как древней, так и не­давней истории человечества.

Рассмотрим два интересных примера: употребление алкоголя и молока. Способность употреблять большие объемы спиртного во многом зависят от работы гена на хромосоме 4, кодирующего синтез фермента алкогольдеги- дрогеназы. У многих людей есть врожденная способность при необходимости быстро наращивать производство это­го фермента - результат тяжелой многовековой практики. Люди, у которых данный фермент плохо работал, дегради­ровали и умирали от алкоголизма. Способность к потре­блению спиртных напитков была эволюционно прогрес­сивной, поскольку спирт убивал микробов, вызывавших опустошительные эпидемии дизентерии и других желудоч­но-кишечных инфекций у оседло живущих средневековых земледельцев. «Не пейте сырую воду» - предупредят вас в любом туристическом агентстве перед поездкой в тропиче­ские страны. Помимо бутылированной воды безопасными напитками являются кипяченая вода и спиртные напитки. До XVIII столетия включительно богатые европейцы пили только вино, пиво, кофе и чай. Употребление любых дру­гих напитков было чревато опасностью кишечных инфек­ций. (Опасность прошла, но привычка осталась.)

Однако скотоводы и кочевники, во-первых, не выращи­вали растений, пригодных для ферментации и, во-вторых, не нуждались в стерилизации напитков, так как жили обо­собленно поблизости от незагрязненных природных источ­ников. Не удивительно, что коренные жители Австралии и Америки оказались столь восприимчивы к алкоголизму. У них нет ферментов для быстрого расщепления этанола.

Подобную эволюцию пережил другой ген на хромосо­ме 1, ответственный за синтез лактазы. Этот фермент не­обходим для расщепления лактозы- молочного сахара.

Мы все рождаемся с данным геном, который активно рабо­тает, пока мы маленькие. Но у большинства людей и всех остальных млекопитающих этот ген выключается по мере взросления. Это объясняется тем, что млекопитающие упо­требляют молоко только в младенчестве. В дальнейшем нет смысла тратить энергию на синтез ненужного фермента. Но несколько тысяч лет назад древние люди научились по­лучать молоко от домашних животных и стали родоначаль­никами молочной диеты. Вкусное и полезное для детей молоко оказалось трудным для переваривания взрослым организмом продуктом ввиду отсутствия лактазы. Один из способов превращения молока в диетическую пищу состо­ял в том, чтобы дать бактериям съесть всю лактозу, оставив остальные питательные вещества человеку. Так появился сыр, содержащий мало лактозы и одинаково хорошо усва­иваемый как детьми, так и взрослыми.

Случайно в результате мутации в одном из регуляторных генов, чей продукт выключал ген лактазы, фермент стал синтезироваться на протяжении всей жизни. К радости из­готовителей кукурузных и пшеничных хлопьев, которые подают к завтраку с молоком, большинство европейцев уна­следовали эту мутацию. Примерно 70% европейцев легко усваивают молоко в зрелом возрасте, тогда как в отдельных частях Африки, Восточной и Центральной Азии, а также Океании только 30% населения имеют необходимый фер­мент. Частота мутаций может существенно меняться даже в смежных районах. Возникает вопрос: каковы причины, которые заставляли разные народы переходить на молоч­ную диету?

Существует три основные гипотезы на эту тему. Первая и наиболее очевидная состоит в том, что пастухи и кочев­ники переходили на молочную пищу, чтобы разнообразить свое убогое питание на пастбищах. Во-вторых, переход на молочную диету мог стимулироваться недостатком солнца, и, следовательно, витамина D. Витамин D вырабатывает­ся под воздействием солнечных лучей но, кроме того, им богато молоко. Основой для этой гипотезы послужил тот факт, что сырое молоко больше пьют в Северной Европе, тогда как жители Средиземноморья предпочитают сыры. Третья причина характерна для засушливых районов, где молоко могло быть дополнительным источником жидко­сти. Например, много молока потребляют бедуины и туа­реги Сахары.

Два биолога собрали сведения о потреблении молока у 62 народов и народностей, чтобы найти статистическое подтверждение этим гипотезам. Они не обнаружили чет­кой корреляции между потреблением молока и широтой местности, или особенностями ландшафта, что снижает вероятность второй и третьей гипотез. Но потребление молока существенно возрастало у тех народов, чьи предки были скотоводами, как, например, народ тутси в централь­ной Африке, фуланы из западной Африки, народы пустынь (бедуины и туареги), ирландцы, чехи и испанцы, - у всех этих народов практически нет ничего общего за исключе­нием того, что их предки пасли отары овец, стада коров, или держали коз. Эти народы являются чемпионами в по­треблении молока на душу населения (Holden С., Mace R. 1997. Phylogenetic analysis of the evolution of lactose digestion in adults. Human Biology 69: 605-628).

Есть свидетельства в пользу того, что эти народы снача­ла научились скотоводству, а потом уже пристрастились к молочной диете. Сомнительно, чтобы они перешли к ското­водству из-за генетической предрасположенности к потре­блению молока. Это важное открытие, показывающее, как культурно-социальные изменения в обществе ведут к генети­ческим изменениям. Гены могут включаться и выключаться под влиянием волевых решений индивидуума. Перейдя к скотоводству, люди самостоятельно создали новый эволюци­онный тренд. Это звучит почти так же, как эволюционные ереси ламаркистов о том, что кузнец, нарастивший бицепсы тяжелым трудом, может передать этот признак своему сыну по наследству. Это, конечно, не так. И все же следует при­знать, что смена образа жизни создает эволюционный прес­синг на геном, результатом которого становится генетиче­ское разнообразие популяций нашего вида.

ГЕНЕТИКА ЧЕЛОВЕКА (демографические аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у других организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях с помощью половых клеток. Каждый из генов представлен в организме дважды - один получен от отца, другой - от матери. В зависимости от различия или тождества унаследованных генов человек соответственно гетерозиготен (т.е. отцовский и материнский гены в данной паре не одинаковы) или гомозиготен (отцовский и материнский гены в данной паре одинаковы). Вероятность гомозиготности по совокупности генов из-за большого их числа (по разным оценкам, 105-106) крайне мала. Доля генов в гомозиготном состоянии у человека возрастает, если его родители имеют общих предков, от которых унаследовали идентичные гены. Такие случаи, регулируясь в человеческом обществе брачными традициями и законами, встречаются сравнительно редко, и, как правило, индивидуальный набор генов - генотип - формируется сочетанием родительских генов, происходящих из разных частей генофонда - общей совокупности генов популяции. Индивидуальное разнообразие набора генов огромно и образует биол. фундамент уникальности и неповторимости человеческой личности.

Один из важнейших разделов генетики человека - популяционная генетика человека. В отличие от популяций других видов популяция человека - объект действия и продукт не только естественно-исторического, но и общественно-исторического процесса. Воспроизводство генов человека, будучи, с одной стороны, сугубо биологическим процессом, с другой - социально обусловлено и неотделимо от демографического развития и воспроизводства народонаселения. Передача генетической информации в поколениях, ее распределение в пространстве расселения населения, изменение в ходе миграций, переселений, взаимодействий населения с окружающей средой - все эти движения генетического материала у человека связаны с демографическими процессами. Таким образом, популяционную генетику человека можно рассматривать как демографическую генетику, т. е. область взаимодействия генетики и демографии, исследующую генетические последствия демографических процессов.

Генофонд популяции, представленный в каждом поколении разнообразными генотипами, не остается постоянным во времени, т. к. благодаря дифференциальной рождаемости, смертности и миграции носители генов одного поколения в разной степени передают свои гены новым поколениям. Изменение популяционного генофонда, вызванное неодинаковым участием носителей разных генов в процессе воспроизводства, считается в общей теории популяционной генетики основным проявлением естественного отбора, который меняет структуру генофонда в сторону большего соответствия условиям среды. Другими факторами, действующими на изменения генофонда в популяциях человека, являются мутации, миграции и дрейф генов. Мерилом биологически нормальной, естественной скорости изменения генофонда является темп естественного мутационного процесса. Эффекту мутаций собственных генов генофонда эквивалентен эффект миграций генов из других популяций с существенно иным генофондом, т. к. при этом также возникают новые, ранее несвойственные популяции генотипы. Другое последствие регулярных миграций генов - стирание генетических различий между популяциями, потеря ими генетического своеобразия, возникшего в ходе самостоятельного развития и специфического приспособления к локальным условиям среды. Миграция генов осуществляется через миграцию их носителей. Роль миграции в истории развития народонаселения едва ли поддается однозначной оценке и трактовке, но некоторые ее генетические последствия очевидны, ибо значительная часть современного мирового населения представлена генетически смешанными популяциями. В несколько ином плане та же проблема возникает в связи с процессом урбанизации, вызывающим отлив населения из различных местных популяций и его прилив в центры урбанизации.

Даже в отсутствии мутаций, отбора, миграций генов (что почти невероятно) генофонд популяции все же сохраняет возможность изменяться. Происходит это в силу так называемого дрейфа генов, или генетико-автоматического процесса, - такого изменения генетической структуры популяции, которое вызывается случайными причинами, например, малыми размерами популяции. Дрейф генов наблюдается в численно небольших и преимущественно эндогамных популяциях - изолятах, где имеет место значительное несоответствие между потенциально всегда большим разнообразием возможных генотипов и малым числом реальных носителей генов. В силу малочисленности популяции в каждом поколении реализуется лишь малая часть возможных генотипов, и формирование генофонда нового поколения приобретает характер случайного выбора ограниченного числа генов из родительского генофонда. Популяционная генетика трактует дрейф генов как процесс, не зависящий от состояния среды. Вместе с тем именно на примере малых замкнутых популяций человека можно увидеть, что численность популяции определенным образом связана с уровнем общественно-экономического и культурного развития, а также с характером взаимодействия популяции со средой обитания. Таким образом, дрейф генов, зависящий от размера популяции, оказывается зависимым и от состояния общественной и природной среды.

Различные генетические процессы, рассмотренные выше порознь, в реальных популяциях представляют взаимосвязанные компоненты единого генетического процесса.

Основным источником информации о генетических процессах в населении является генетический полиморфизм, т. е. одновременное присутствие в популяции двух и более форм одного и того же наследственного признака или свойства. Он исследуется с помощью генетических маркеров - наследственных признаков, свидетельствующих о присутствии в генотипе человека тех или иных генов, обусловливающих эти признаки. Соответственно применяются разнообразные экспериментальные методы изучения генетических маркеров как источников информации о генотипах людей и генофондах популяций. Важную информацию о степени замкнутости и своеобразии генофонда в эндогамных популяциях, об уровне наследств, полиморфизма и т. п. позволяет получить генеалогия популяции, а также архивные и текущие записи актов гражданского состояния. Источником информации в генетике человека служат и такие сведения о населении, как его численность, брачность, семейная структура, рождаемость, смертность, расселение и пространств, структура, миграции. Гены, носителями которых являются современные поколения, дошли до них из глубокого прошлого, и поэтому генетика человека использует также данные археологии, этнографии и истории.

Генетические аспекты численности и демографической структуры населения . Население мира в целом, как и население, слагающее отдельные этносы, имеет сложную иерархическую популяционную структуру. В основании этой иерархии находятся элементарные популяции - простейшие единицы всей популяционной системы человечества. На нижнем уровне этой системы преобладают популяции сельского типа с численностью от десятков и сотен до тысяч человек. К этому же уровню относят и городские популяции с численностью от тысяч до миллионов человек. При различной численности и сельские, и городские популяции однотипны с том отношении, что лишены постоянных внутрипопуляционных барьеров, которые расчленяли бы их генофонд на относительно независимые и устойчиво воспроизводящиеся в поколениях части (в больших городах капиталистических стран в значительной степени сохраняется расчлененность генофонда в силу расовых, национальных, кастовых, религиозных и других различий). Число генов какого-либо типа в генофонде элементарной популяции вдвое больше числа составляющих ее людей. Однако с формированием генофонда следующего поколения связана лишь часть генов, носители которых - люди репродуктивного возраста. Из них не все вступают в брак, а из вступивших не все имеют детей или имеют разное их число и, наконец, не все дети доживают до репродуктивного возраста. Это означает, что даже гены, образующие ту часть генофонда, которая обеспечивает его воспроизводство, воспроизводят себя в разном числе копий. Чем меньшая часть генов родительского поколения воспроизвела себя в большем числе копий, тем больше генетические различия между поколениями популяции. В связи с этим генетически значимой является не общая численность популяции, а ее т. н. генетически эффективная численность - параметр, учитывающий все составляющие процесса воспроизводства - неравное соотношение полов, их неравную плодовитость, репродуктивную активность, ее продолжительность, различную в разных семьях выживаемость детей.

Отношение генетически эффективной численности к общей численности популяции зависит не только от биологических, но и от социальных факторов. В популяциях сельского типа это отношение составляет обычно около 1/3. В городских популяциях под выравнивающим влиянием социальной среды на репродуктивные показатели семей доля генетически эффективной численности может резко возрастать даже при сокращении воспроизводства и общего размера популяции. Размер популяции в свою очередь влияет на скорость генетических изменений в популяции: чем он численно больше, тем медленнее изменяется генетическая структура популяции. Поэтому там, где население состоит из большого числа элементарных популяций, наблюдаются значительные генетические различия между ними.

Генетические аспекты брачности . Многие моменты математического моделирования генетических процессов в популяциях связаны с принципом панмиксни (полной случайности образования брачных пар). В популяциях человека этот принцип реализуется с большими ограничениями. Общество, запрещая или поощряя, в зависимости от традиций и законов, родственные браки, регулирует степень панмиксии и воздействует на генетический процесс. В разных общественно-экономических и историко-культурных условиях различна и широта брачного круга, а следовательно, и уровень генетического разнообразия в нем. Ориентируясь, хотя бы частично, на психофизиологические (темперамент и т. д.), морфологические (тип телосложения, расовые особенности) и др. свойства, прямо или косвенно связанные с генотипом, человек тем самым производит неслучайный выбор из окружающего его разнообразия генотипов. Наибольшая избирательность наблюдается при близкородственных браках - инбридинге. Особенно высока его частота в изолятах, где преобладают внутренние (эндогамные) браки (их частота достигает почти 100%). В этом случае сама традиция эндогамии, несмотря на запрещение явно родственных браков, неминуемо порождает инбридинг. Чем меньше генетически эффективная численность изолята, тем с течением времени все более родственными становятся браки, и все более увеличивается генетическая однородность популяции. Уровень наследственного полиморфизма в таком изоляте сокращается, и популяция оказывается высокоадаптированной к узкому диапазону условий окружающей среды. Известны случаи, когда популяции, оказавшись на исторических окраинах мира и утратив в условиях изоляции некоторую долю наследственного полиморфизма (в частности, иммунологического), при контакте с пришлыми группами населения ценой больших потерь адаптировались к изменившейся эпидемиологической обстановке.

Широта брачного круга может сказываться и на таких признаках потомства, которые лишь частично определяются генотипом. С широтой брачного круга, т. е. с уровнем генетических различий родителей, до определенной степени связаны показатели физического развития детей, выносливости, устойчивости к стрессу, трудоспособности. В уровне этих различий, судя по влиянию на потомство, существует свой оптимум, означающий существование оптимума и в размерах круга брачных связей.

Генетические аспекты семейной структуры . Главный метод изучения закономерностей наследственной передачи признаков у человека - анализ распределения признаков у членов семьи в зависимости от степени их родства. Если признак, будучи генетическим маркером, не влияет на подбор супружеских пар, то доля родительских пар с определенным сочетанием маркирующих признаков обусловлена только частотой, с которой распространены в населении гены, кодирующие эти признаки. Например, группы крови человека, обозначаемые символами О(I), А(II), В(III) и AB(IV), кодируются тремя аллельными генами О, А и В. Распространение этих трех генов в мировом населении изучено особенно хорошо в силу их значимости для службы переливания крови. Семейная структура населения локальной ли популяции, народа, страны или мира в целом в отношении признака групп крови представлена 16 генетически различными типами супружеских пар. Частота каждого из этих типов всецело зависит от частоты трех аллельных генов А, В и О. Так, зная, что в Западной Европе эти гены представлены в генофонде в соотношении 26% (А), 6% (В), 68% (О), а в Южной и Восточной Азии в соотношении 20% (А), 20% (В) и 60% (О), можно заранее предсказать, что семья, где, например, мать группы крови О(I) и отец группы крови А (II), в Западной Европе составляют ок. 20%, а в Южной и Восточной Азии - около 10% всех супружеских пар. В семьях с супружескими парами этого типа часты случаи патологии повторных и многократных беременностей и родов на почве иммуногенетической несовместимости родителей. Социально значимые аспекты одного этого факта проявления генетических закономерностей в семейной структуре населения очевидны, Таким образом, существует связь между частотой, с которой гены представлены в генофонде населения, частотами генотипов людей и частотами генетически различных типов семей, передающих в следующее поколение определенную долю генов генофонда. Величина помех в передаче генетической информации в поколениях обратно пропорциональна числу детей в семьях и прямо пропорциональна степени различий семей по числу детей.

Родство в семье имеет определенную генетическую меру, определяющую долю общих генов у любых двух членов семьи, связанных общностью (даже отдаленной) происхождения. Наиболее распространенные типы родства могут быть выражены долей генов, унаследованных от общего предка. Это имеет значение в вопросах регулирования браков, в случае наследств, заболеваний и при медико-генетическом консультировании относительно риска заболевания, отмеченного в семье.

Генетические аспекты рождаемости . Индивидуальное развитие (онтогенез) человека находится под генетическим контролем, в наибольшей мере проявляющимся в ранние фазы - от образования зиготы (оплодотворенной яйцеклетки) до рождения и раннего детства. Такой контроль наиболее ясно выступает в явлении генетического определения (детерминации) пола системой двух так называемых половых хромосом (одной, полученной от отца, другой - от матери). Генетическая детерминация пола происходит в момент слияния родительских половых клеток и зависит от того, в каком сочетании половые хромосомы родителей оказались в новой зиготе. Генетически контролируется также взаимодействие плода с материнским организмом. По оценкам, не менее 10% всех зачатий оканчивается спонтанными абортами, обусловленными генетической несовместимостью матери и плода. Менее выраженная генетическая несовместимость сказывается в осложненном протекании беременности и родов. Наиболее известный пример проявления генетических факторов в беременности и рождаемости - резус-несовместимость матери и плода, а значит и супругов, возникающая в силу полиморфизма генов, контролирующих резус-группы крови. Этот вид генетической несовместимости особенно част в населении Европы, Неравная плодовитость различных генотипов способна в ряду поколений изменить генофонд путем преимущественного распространения одних и убыли других генов.

Генетические аспекты смертности . Одни гены, унаследованные человеком от родителей, функционируют на протяжении всей жизни, другие - лишь на определенном этапе онтогенеза, третьи, присутствуя в генотипе, могут так и не проявиться в фенотипе. Хотя все гены не меняются в течение жизни организма, в разных возрастных группах населения наблюдаются различия в частоте разных генотипов. Причина этого в неодинаковой выживаемости индивидуальных генотипов. Она наиболее очевидна, когда организм оказывается носителем так называемых летальных генов, приводящих к его гибели. В других случаях определенные генотипические комбинации в определенной среде в той или иной мере снижают жизнеспособность и тем самым влияют на индивидуальную продолжительность жизни. В популяциях, существующих в стабильной среде, повышенная смертность отдельных генотипов компенсируется их повышенной плодовитостью и, таким образом, не затрагивает генетических различий между поколениями. В иных условиях изменение частоты генотипов в популяции отражает направление ее генетической адаптации к изменениям окружающей среды. В человеческом обществе, прилагающем максимум усилий в борьбе со смертностью, генетические причины смертности в наибольшей мере сказываются на начальных этапах онтогенеза.

Причиной неодинаковой выживаемости генотипов является также различная степень устойчивости и подверженности людей заболеваниям, хотя преимущество одних генотипов перед другими в этом отношении не является ни абсолютным, ни постоянным. Неравная жизнеспособность разных генотипов - один из механизмов, поддерживающий наследственный полиморфизм в популяциях человека, причем величина различий в степени жизнеспособности обычно порядка одного - нескольких %. В некоторых случаях (при появлении в среде патогенного фактора) соотношение в выживаемости генотипов достигает десятков %. Наиболее известный пример такого рода связан с серповидно-клеточной анемией - болезнью, первопричина которой в мутации одного из генов, кодирующих синтез гемоглобина. Если у какого-либо индивида в обеих гомологичных хромосомах присутствует мутантный ген (HbS), то такой индивид страдает тяжелой анемией и, как правило, не доживает до зрелости. Таким образом, при генотипе HbS HbS весь гемоглобин принадлежит к аномальному типу и разница в выживании такого генотипа по сравнению с нормальным НbA НbA составляет практически 100%. Однако в условиях тропической Африки и субтропического Средиземноморья разница в выживании меньше 100% в силу низкой устойчивости нормального генотипа НbA НbA к поражению малярийным плазмодием, для развития которого аномальный гемоглобин представляет менее подходящую среду, чем нормальный. Наиболее жизнестойки индивиды с генотипом HbA HbS, у которых ген НbA обеспечивает образование нормального гемоглобина, а ген HbS защищает от поражения малярийным плазмодием.

Генетические аспекты воспроизводства населения . В понятиях генетики человека воспроизводство населения есть воспроизводство генов человека в ходе смены поколений. Генетически ключевыми единицами в воспроизводстве населения являются элементарные популяции, дифференцированный рост которых в ходе воспроизводства ведет к неодинаковому распространению в населении генов из того или иного генофонда. Поскольку элементарные популяции человека не существуют вне этносов, в их неравном воспроизводстве отражено неравное же воспроизводство этнических генофондов, необратимо меняющее генетические свойства населения, что сказывается не только в постепенном изменении физического облика поколений, но и в нарушении устойчивости к патогенным факторам среды. Генетически значимая единица времени в воспроизводстве - поколение. В воспроизводстве генов нового поколения участвуют обычно 2 из 3-4 одновременно сосуществующих поколений, что сокращает возможность резких изменений в генетической структуре нового поколения и обеспечивает большую генетическую преемственность между поколениями. Охрана генетических механизмов воспроизводства - ключевое условие поддержания нормального физического состояния поколений. Посредством воспроизводства населения из отдаленного прошлого в настоящее и будущее передаются древние гены, обусловливающие физическое и психическое единство и целостность человечества во всем его многообразии. Воспроизводством могут быть подхвачены и новые гены, возникающие в результате мутаций. Систематический контроль за частотой генных мутаций - один им методов оценки генетического состояния среды и нормального хода воспроизводства.

Генетические аспекты миграции и расселения населения . Миграция населения приводит к миграции генов человека. Миграция генов в популяцию, изменяя генофонд, формируя новые генотипы, меняя установившиеся в поколениях соотношения приспособлеyнностей генотипов, усиливая дифференциальную плодовитость и выживаемость, выступает как фактор, воздействующий на течение генетического процесса в популяции. Различают интенсивность и генетическая эффективность миграции. При одинаковой интенсивности генетическая эффективность миграции тем больше, чем больше генетическое своеобразие популяций, обменивающихся генами, а генетическое своеобразие тем больше, чем больше размерностей у пространства, в котором происходит миграция. Социальная природа человека способствует увеличению числа размерностей миграционного пространства свыше двух - трех, свойственных популяциям других организмов, однако она же создает условия и стимулы к преодолению этого пространства, разделяющего популяции. Негритянское гетто Нью-Йорка, азиатские кварталы Сан-Франциско, Ист-Энд и Уэст-Энд Лондона, Замоскворечье и Белый город дореволюционной Москвы - все это не столько территориально, сколько социально разобщенные пространства, в которых происходят миграции генов, часто однонаправленные (например, от белых американцев к черным, но почти никогда - обратно). Преодоление такого пространства оказывается часто более трудным, чем преодоление географических расстояний. Когда миграция перестает зависеть от любого рода расстояний между популяциями, ее влияние, нивелирующее генетическое разнообразие популяций, становится максимальным. В популяциях, генетическое развитие в которых протекает по стационарному типу, миграция выступает в качестве фактора, регулирующего уровень генетического разнообразия, необходимый для поддержания адаптационной пластичности населения в изменяющейся окружающей среде. Этот уровень оказывается единым для коренного населения разных континентов и указывает на то, что в ходе истории был выработан оптимальный режим для всех генетических процессов в населении. Такой режим обеспечивает распределение всего эволюционно накопленного генетического разнообразия населения на внутрипопуляционные и межпопуляционные компоненты примерно в соотношении 90% а 10%. Такое же соотношение обнаружено в различных популяциях животных и растений, что подчеркивает его уникальную эволюционную важность для выживания. Соотношение внутри- и межпопуляционного генетического разнообразия легко вычисляется из демографических данных о миграции и численности населения. Поэтому эти данные могут служить для генетической оптимизации миграции населения и демографических процессов в целом.

В череде поколений относительно изолированного автохтонного развития генофонд каждой популяции и каждой группы мирового населения приобретает отличительные черты. Так сложились, например, существенно разные генофонды населения на территории СССР к 3ападу и Востоку от Урала, проявляющиеся даже в антропологических типах. Вместе с тем генофонд коренного населения обширного района между Волгой и Обью являет промежуточные черты, сложившиеся в результате длившегося тысячелетиями просачивания и миграций генов между европейскими и азиатскими частями общего генофонда древнего населения нашей страны. В эпоху Великого переселения народов миграция масс населения центрально-азиатского и южно-сибирского происхождения привела к широкому распространению генов из азиатского генофонда среди населения Европейской части СССР и Европы в целом. Последствия этих миграционных процессов древности до сих пор отражены в геногеографии населения Северной Евразии. Считается, что вызванная этими миграциями перестройка генофонда населения Европы сопровождалась изменением адаптационных свойств генотипов людей. Это проявилось, в частности, в распространении в населении Европы резус-несовместимости матери и плода, которая не встречается в Азии и очень редка на крайнем 3ападе Европы у басков. Одно лишь это «эхо» древних демографических процессов, нарушивших естественный ход и направление генетического развития населения Европы, требует сегодня особых профилактических мероприятий по охране материнства и детства. В геногеографии мирового населения отражены и многие другие события мировой демографической истории.

Обращенная в будущее, генетика человека дает ключ к пониманию и оценке возможных отдаленных генетических последствий современных демографических процессов.

Ю.Г. Рычков.

Демографический энциклопедический словарь. - М.: Советская энциклопедия. Главный редактор Д.И. Валентей. 1985.

Литература:

Ниль Дж., Шэлл У., Наследственность человека, пер. с англ. М. 1958; Штерн К, Основы генетики человека, пер. с англ., М. 1965; Маккьюсик В., Генетика человека, пер. с англ., М. 1967; Бочков Н. П, Генетика человека, М. 1978; Л и Ч., Введение в популяц. генетику, пер. с англ., М. 1978; Беляев Д. К., Совр. наука и проблемы исследования человека, «Вопросы философии», 1981, № 3.

Sforza L. L., Воrimer W. F., The genetics of human populations, S. F., 1977.

Причины появления
генетических различий между популяциями

Люди, живущие в разных концах Земли, различаются многими
признаками: языковой принадлежностью, культурными традициями, внешностью,
генетическими особенностями. Каждая популяция характеризуется своим набором
аллелей (различных состояний гена, соответствующих различным состояниям
признака, причем некоторые аллели могут быть уникальными для этнической группы
или расы) и соотношением их популяционных частот.

Генетические характеристики народов зависят от их истории и
образа жизни. В изолированных популяциях, не обменивающихся потоками генов (то
есть не смешивающихся из-за географических, лингвистических или религиозных
барьеров), генетические различия возникают за счет случайных изменений частот
аллелей и благодаря процессам позитивного и негативного естественного отбора.
Без действия каких-либо других факторов случайные изменения генетических
характеристик популяций обычно невелики.

Значительные изменения частот аллелей могут возникать при
сокращении численности популяции или отселении небольшой группы, которая дает
начало новой популяции. Частоты аллелей в новой популяции будут сильно зависеть
от того, каким был генофонд основавшей ее группы (так называемый эффект основателя).
С эффектом основателя связывают повышенную частоту болезнетворных мутаций в
некоторых этнических группах.

Например, один из видов врожденной глухоты вызывается у
японцев мутацией, возникшей однократно в прошлом и не встречающейся в других
регионах мира, то есть все носители получили мутацию от общего предка, у
которого она возникла. У белых австралийцев глаукома связана с мутацией,
принесенной переселенцами из Европы. У исландцев найдена мутация,
повышающая.риск развития рака и восходящая к общему прародителю. Аналогичная
ситуация обнаружена у жителей острова Сардиния, но мутация у них другая,
отличная от исландской. Эффект основателя является одним из возможных
объяснений отсутствия у индейцев Южной Америки разнообразия по группам крови:
преобладающая группа крови у них – первая (частота ее более 90%, а во многих
популяциях – 100%). Так как Америка заселялась небольшими группами, пришедшими
из Азии через перешеек, когда-то соединявший эти материки, возможно, что в
популяции, давшей начало коренному населению Нового Света, другие группы крови
отсутствовали.

Слабовредные мутации могут долго поддерживаться в популяции,
тогда как мутации, значительно снижающие приспособленность индивида,
отсеиваются отбором. Показано, что болезнетворные мутации, приводящие к более
тяжелым формам наследственных заболеваний, обычно эволюционно молоды. Давно
возникшие мутации, длительное время сохраняющиеся в популяции, связаны с более
легкими формами болезни.

Популяции адаптируются к условиям обитания в результате
отбора путем как фиксации случайно возникших новых мутаций (то есть новых
аллелей), повышающих приспособленность к этим условиям, так и изменения частот
существующих аллелей. Разные аллели обусловливают разные варианты фенотипа,
например, цвета кожи или уровня холестерина в крови. Частота аллеля,
обеспечивающего адаптивный фенотип (скажем, темная кожа в зонах с интенсивным
солнечным облучением), возрастает, так как его носители жизнеспособнее в данных
условиях. Адаптация к различным климатическим зонам проявляется как вариация
частот аллелей комплекса генов, географическое распределение которых
соответствует этим зонам. Самый заметный след в глобальном распределении
генетических вариаций оставили миграции народов при расселении от африканской
прародины.

Происхождение и
расселение человека

Ранее историю появления вида Homo sapiens на Земле
реконструировали на основе палеонтологических, археологических и
антропологических данных. В последние десятилетия появление
молекулярно-генетических методов и исследования генетического разнообразия
различных народов позволили уточнить многие вопросы, связанные с происхождением
и расселением людей современного анатомического типа.

Молекулярно-генетические методы, применяемые для
восстановления событий демографической истории, сходны с лингвистическими
методами реконструкции праязыка. Время, прошедшее с того момента, когда два
родственных языка разделились (то есть перестал существовать их общий предковый
праязык), оценивают по количеству различающихся слов, появившихся за период
раздельного существования этих языков. Аналогично время существования общей
предковой популяции для двух современных народов оценивают по количеству
различий (мутаций), накопившихся в ДНК представителей этих народов. Так как
скорость накопления мутаций в ДНК известна, по числу мутаций, различающих две
популяции, можно определить, когда они разошлись.

Дату расхождения популяций устанавливают с помощью так
называемых нейтральных мутаций, не влияющих на жизнеспособность индивида и не
подверженных действию естественного отбора. Такие мутации найдены во всех
участках генома человека, но чаще всего в филогенетических исследованиях
рассматривают мутации в ДНК, содержащейся в клеточных органеллах – митохондриях
(мтДНК).

Первым использовал мтДНК для реконструкции истории
человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы
мтДНК, полученные из крови людей из всех частей света, и на основе выявленных
между ними различий построил филогенетическое древо человечества. Уилсон
показал, что все современные мтДНК могли произойти от мтДНК общей праматери,
жившей в Африке. Работа Уилсона приобрела широкую известность. Обладательницу
предковой мтДНК тут же окрестили «митохондриальной Евой», что породило неверные
толкования – будто все человечество произошло от одной-единственной женщины. На
самом деле у «Евы» было несколько тысяч соплеменниц, просто их мтДНКдо наших
времен не дошли. Однако их вклад бесспорен – от них мы унаследовали
генетический материал хромосом. Появление новой мутации в мтДНК дает начало
новой генетической линии, наследуемой от матери к дочери. Характер наследования
в данном случае можно сравнить с семейным имуществом – деньги и земли человек
может получить от всех предков, а фамилию – только от одного из них.
Генетический аналог фамилии, передаваемой по женской линии, – мтДНК, по мужской
– Y-хромосома, передаваемая от отца к сыну.

К настоящему времени изучены мтДНК десятков тысяч людей. Удалось
выделить мтДНК из костных останков древних людей и неандертальцев. На основе
изучения генетических различий представителей разных народов генетики пришли к
выводу, что на протяжении последнего миллиона лет численность групп
одновременно живущих прямых предков человека колебалась от 40 до 100 тыс.
Однако около 100-130 тыс. лет назад общая численность предков человека
сократилась до 10 тыс. индивидов (генетики называют сокращение численности
популяции с последующим быстрым ростом ее прохождением через «бутылочное
горлышко»), что привело к значительному снижению генетического разнообразия
популяции (рис. 1).

Рис. 1. Результаты оценки численности популяций на основе изучения генетических различий представителей разных народов.

Причины колебания численности пока неизвестны, вероятно, они
были такими же, как и у других видов животных, – изменения климата или кормовых
ресурсов. Описываемый период снижения численности и изменения генетических
характеристик предковой популяции считается временем появления вида Homo
sapiens.

(Часть антропологов относят неандертальцев также к виду Homo
sapiens. В этом случае линию человека обозначат как Homo sapiens sapiens, а
неандертальца – как Homo sapiens neanderthalensis. Однако большинство генетиков
склонны считать, что неандерталец представлял хотя и родственный человеку, но
отдельный вид Homo neanderthalensis. Эти виды разделились 300-500 тыс. лет
назад.)

Изучение мтДНК и аналогичные исследования ДНК Y-хромосомы,
передающейся только по мужской линии, подтвердили африканское происхождение
человека и позволили установить пути и даты его расселения на основе
распространения различных мутаций у народов мира. По современным оценкам, вид
Homo sapiens появился в Африке около 130-180 тыс. лет назад, затем расселился в
Азии, Океании и Европе. Позже всего была заселена Америка (рис. 2).

Рис. 2.Пути (отмечены стрелками) и даты (обозначены цифрами) расселения человека, установленные на основе изучения распространения различных мутаций у народов мира.

Вероятно, исходная предковая популяция Homo sapiens состояла
из небольших групп, ведущих образ жизни охотников-собирателей. Расселяясь по
Земле, люди несли с собой свои традиции и культуру и свои гены. Возможно, они
также обладали и праязыком. Пока лингвистические реконструкции древа
происхождения языков мира ограничены 30 тыс. лет, и существование общего для
всех людей праязыка только предполагается. И хотя гены не определяют ни язык,
ни культуру, во многих случаях генетическое родство народов совпадает и с
близостью их языков и культурных традиций. Но есть и противоположные примеры,
когда народы меняли язык и перенимали традиции своих соседей. Смена традиций и
языка происходила чаще в районах контактов различных волн миграций либо как
результат социально-политических изменений или завоеваний.

Конечно, в истории человечества популяции не только
разделялись, но и смешивались. Поэтому каждый народ представлен не единственной
генетической линией мтДНК или Y-хромосомы, но набором разных, возникших в
разное время в разных регионах Земли.

Адаптация популяций
человека к условиям обитания

Результаты сравнительных исследований мтДНК и Y-хромосом
разных популяций современных людей позволили выдвинуть предположение, что еще
до выхода из Африки, около 90 тыс. лет назад, предковая популяция разделилась
на несколько групп, одна из которых вышла в Азию через Аравийский полуостров.
При разделении различия между группами могли быть чисто случайными. Большая
часть расовых различий возникла, вероятно, позже как адаптация к условиям
обитания. Это относится, например, к цвету кожи – одному из самых известных
расовых признаков.

Адаптация к
климатическим условиям.
Степень пигментации кожи у человека генетически
задана. Пигментация обеспечивает защиту от повреждающего действия солнечного
облучения, но не должна препятствовать получению минимальной дозы
ультрафиолета, необходимого для образования в организме человека витамина Д,
предотвращающего рахит.

В северных широтах, где интенсивность облучения низка, люди
обладают более светлой кожей. Жители экваториальной зоны имеют самую темную
кожу. Исключения составляют обитатели затененных тропических лесов – их кожа
светлее, чем можно было бы ожидать для этих широт, и некоторые северные народы
(чукчи, эскимосы), кожа которых относительно сильно пигментирована, так как они
употребляют в пищу продукты, богатые витамином Д, например, печень морских
животных. Таким образом, различия в интенсивности ультрафиолетового излучения
действуют как фактор отбора, приводя к географическим вариациям в цвете кожи.
Светлая кожа – эволюционно более поздний признак, возникший из-за мутаций в
нескольких генах, регулирующих выработку кожного пигмента меланина. Способность
загорать также детерминирована генетически. Ею отличаются жители регионов с
сильными сезонными колебаниями интенсивности солнечного излучения.

Известны связанные с климатическими условиями различия в
строении тела. Речь идет об адаптациях к холодному или теплому климату:
короткие конечности у арктических популяций (чукчи, эскимосы) увеличивают
отношение массы тела к его поверхности и тем самым уменьшают теплоотдачу, а
жители жарких сухих регионов, например африканские масаи, отличатся длинными
конечностями. Для обитателей районов с влажным климатом характерны широкие и
плоские носы, а в сухом холодном климате эффективнее длинный нос, лучше
согревающий и увлажняющий вдыхаемый воздух.

Приспособлением к жизни в высокогорных условиях является
повышенное содержание гемоглобина в крови и усиление легочного кровотока. Такие
особенности наблюдаются у коренных жителей Памира, Тибета и Анд. Все эти
отличия определяются генетически, но степень их проявления зависит от условий
развития в детстве. Например, у андских индейцев, выросших на уровне моря,
признаки выражены в меньшей степени.

Адаптация к типам
питания.
Некоторые генетические изменения связаны с различиями в типах
питания. Наиболее известна среди них гиполактазия – непереносимость молочного
сахара (лактозы). Для усвоения лактозы у детенышей млекопитающих вырабатывается
фермент лактаза. По окончании периода вскармливания этот фермент исчезает из
кишечного тракта детеныша и у взрослых особей не вырабатывается.

Отсутствие лактазы у взрослых является исходным, предковым
признаком для человека. Во многих азиатских и африканских странах, где взрослые
традиционно не пьют молока, после пятилетнего возраста лактаза перестает
вырабатываться. Употребление молока в таких условиях приводит к расстройству
пищеварения. Однако большинство взрослых европейцев вырабатывают лактазу и
могут пить молоко без вреда для здоровья. Эти люди являются носителями мутации
в участке ДНК, регулирующем синтез лактазы. Мутация распространилась после
появления молочного скотоводства 9-10 тыс. лет назад и встречается
преимущественно у европейских народов. Более 90% шведов и датчан способны
усваивать молоко, и лишь небольшая часть населения Скандинавии отличается
гиполактазией. В России частота гиполактазии составляет около 30% для русских и
более 60-80% для коренных народов Сибири и Дальнего Востока.

Народы, у которых гиполактазия сочетается с молочным
скотоводством, традиционно употребляют в пищу не сырое молоко, а кисломолочные
продукты, в которых молочный сахар уже переработан бактериями в легко
усваиваемые вещества. Преобладание единой для всех диеты западного образца в
некоторых странах приводит к тому, что часть детей с недиагностированной
гиполактазией реагирует на молоко расстройством пищеварения, которое принимают
за кишечные инфекции. Вместо необходимого в таких случаях изменения диеты
предписывают лечение антибиотиками, приводящее к развитию дисбактериоза. Еще
один фактор мог способствовать распространению синтеза лактазы у взрослых – в
присутствии лактазы молочный сахар способствует усвоению кальция, выполняя те
же функции, что и витамин Д. Возможно, именно поэтому у северных европейцев
мутация, о которой идет речь, встречается чаще всего.

Жители Северной Азии отличаются наследственным отсутствием
фермента трегалазы, расщепляющего углеводы грибов, которые традиционно
считаются здесь пищей оленей, не пригодной для человека.

Для населения Восточной Азии характерна другая
наследственная особенность обмена веществ: многие монголоиды даже от небольших
доз спиртного быстро пьянеют и могут получить сильную интоксикацию из-за
накопления в крови ацетальдегида, образующегося при окислении алкоголя
ферментами печени. Окисление происходит в два этапа: на первом этиловый спирт
превращается в токсичный этиловый альдегид, на втором альдегид окисляется с
образованием безвредных продуктов, которые выводятся из организма. Скорость
работы ферментов первого и второго этапов (с неудобочитаемыми названиями
алкогольдегидрогеназа и ацетальдегидрогеназа) задается генетически.

В Восточной Азии распространено сочетание «быстрых»
ферментов первого этапа с «медленными» ферментами второго, то есть при приеме
спиртного этанол быстро перерабатывается в альдегид (первый этап), а его
дальнейшее удаление (второй этап) происходит медленно. Эта особенность
восточных монголоидов обусловлена частым сочетанием у них двух мутаций,
влияющих на скорость работы упомянутых ферментов. Предполагается, что так
проявляется адаптация к еще неизвестному фактору среды.

Адаптации к типу питания связаны с комплексами генетических
изменений, немногие из которых пока детально изучены на уровне ДНК. Например, около
20-30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые
пищевые вещества и лекарства, в частности, амитриптилин, благодаря наличию у
них двух или более копий гена, кодирующего один из видов цитохромов –
ферментов, расщепляющих чужеродные вещества, поступающие в организм с пищей. У
народов других регионов удвоение данного гена встречаются с частотой не более
3-5%. Предполагают, что увеличение числа копий гена вызвано особенностями диеты
(возможно, употреблением в пищу больших количеств перца или съедобного растения
тефф, составляющего до 60% продуктов питания в Эфиопии и нигде больше не
распространенного в такой степени). Но что является причиной, а что следствием –
определить в настоящее время невозможно. Привело ли случайное.повышение
частоты в популяции носителей множественных генов к тому, что люди смогли есть
какие-то особые растения? Или то, что они начали употреблять в пищу перец (либо
какой-либо другой продукт, для усвоения которого необходим этот цитохром)
вызвало увеличение частоты удвоения гена? Любой из этих двух процессов мог
иметь место в ходе эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы
взаимодействуют. Употребление тех или иных видов пищи становится возможным лишь
при наличии определенных генетических предпосылок, а ставшая впоследствии
традиционной диета действует как фактор отбора и приводит к изменению частот
аллелей и распространению в популяции генетических вариантов, наиболее
адаптивных при данной диете. Традиции обычно меняются медленно. Так, переход от
собирательства к земледелию и сопутствующие этому изменения диеты и образа
жизни продолжались в течение десятков и сотен поколений. Относительно медленно
происходят и сопровождающие такие события изменения генофонда популяций.
Частоты аллелей могут меняться на 2-5% за поколение, и эти изменения
накапливаются из поколения в поколение. Действие же других факторов, например
эпидемий, часто связанных с войнами и социальными кризисами, может в несколько
раз изменить частоты аллелей на протяжении жизни одного поколения за счет
резкого снижения численности популяции. Так, завоевание Америки европейцами
привело к гибели 90% коренного населения в результате войн и эпидемий.

Генетика устойчивости
к инфекционным заболеваниям

Оседлый образ жизни, развитие земледелия и скотоводства,
повышение плотности населения способствовали распространению инфекций и
вспышкам эпидемий. Например, туберкулез – ранее болезнь крупного рогатого
скота, был получен человеком после одомашнивания животных и стал эпидемически
значимым при зарождении и росте городов. Эпидемии сделали актуальной проблему
устойчивости к инфекциям. Устойчивость к инфекциям также имеет генетический
компонент.

Первым изученным примером устойчивости является
распространение в тропической и субтропической зонах наследственной болезни
крови – серповидноклеточной анемии, которая вызывается мутацией в гене
гемоглобина, приводящей к нарушению его функций. У больных форма эритроцитов,
определяемая при микроскопическом анализе крови, не овальная, а серповидная,
из-за чего болезнь и получила свое название. Носители мутации оказались
устойчивыми к малярии. В зонах распространения малярии наиболее «выгодно»
гетерозиготное состояние (когда из пары генов, полученных от
родителей,поврежден только один, а другой нормален), так как гомозиготные
носители мутантного гемоглобина погибают от анемии, гомозиготные по нормальному
гену – болеют малярией, а у гетерозиготных анемия проявляется в мягкой форме и
они защищены от малярии.

В Европе распространено другое наследственное заболевание –
муковисцидоз. Его причина – мутация, нарушающая регуляцию солевого обмена и
водного баланса клеток. У больных поражаются все органы, выделяющие слизистые
секреты (бронхолегочная система, печень, различные железы). Они умирают к
подростковому возрасту, не оставляя потомства. Однако заболевание возникает
только в том случае, если ребенок получает от обоих родителей поврежденный ген,
гетерозиготные носители мутаций вполне жизнеспособны, хотя выделение железистых
секретов и жидкости у них может быть снижено.

В Европе муковисцидоз встречается у одного из 2500
рожденных. В гетерозиготном состоянии мутация присутствует у одного из 50
человек – очень высокая частота для болезнетворной мутации. Поэтому следует
предположить, что естественный отбор действует в пользу ее накопления в
популяциях, то есть гетерозиготы имеют повышенную приспособленность. И
действительно, считается, что они более устойчивы к кишечным инфекциям.
Существует несколько гипотез о механизмах этой устойчивости. Согласно одной из
них, у гетерозигот по мутации снижено выделение жидкости через кишечник, так
что им в меньшей степени грозит смерть от обезвоживания при диарее, возникающей
в результате инфицирования. Но в жарком климате вред от нарушения солевого
обмена перевешивает пользу от повышенной устойчивости к инфекциям – и
муковисцидоз встречается там крайне редко из-за пониженной жизнеспособности
носителей мутаций.

С устойчивостью к туберкулезу связывают распространение в
некоторых популяциях болезни Тея-Сакса, тяжелого наследственного заболевания,
приводящего к дегенерации нервной системы и изменению слизистой дыхательного
тракта. Выявлен ген, мутации в котором приводят к развитию заболевания.
Предполагают, что гетерозиготные носители мутации более устойчивы к туберкулезу.

Эти примеры показывают, что платой популяции за повышение
выживаемости гетерозиготных носителей мутации может оказаться гибель на порядок
реже встречающихся гомозиготных носителей, которые неизбежно появляются при
повышении ее популяционной частоты. Однако известны мутации, которые и в
гомозиготном состоянии защищают от инфекций, например от инфицирования вирусом
иммунодефицита человека, ВИЧ, либо замедляют развитие болезни после
инфицирования. Две такие мутации встречаются во всех популяциях, а еще одна –
европейского происхождения, и в других регионах отсутствует. Предполагается,
что эти мутации распространились в прошлом, поскольку обладают защитным
эффектом и в отношении других эпидемических заболеваний. В частности,
распространение мутации у европейцев связывают с «черной смертью» – эпидемией
чумы, в XIV веке выкосившей треть населения Европы, а в некоторых регионах – до
80%. Другой кандидат на роль фактора отбора – оспа, также уносившая множество
жизней. До появления больших городов и достижения эпидемического порога
численности населения такие крупномасштабные «раунды отбора» на устойчивость к
инфекциям были невозможны.

Развитие цивилизации и
генетические изменения

Кажется удивительным тот факт, что питание бушменов –
охотников-собирателей, живущих в Южной Африке, оказалось соответствующим
рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов,
микроэлементов и калорий. Биологически человек и его непосредственные предки на
протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей.

Изменение традиционного типа питания и образа жизни
отражается на здоровье людей. Например, афроамериканцы чаще, чем евроамериканцы
болеют гипертонией. У североазиатских народов, традиционная диета которых была
богата жирами, переход на европейскую высокоуглеводную пищу приводит к развитию
диабета и других заболеваний.

Преобладавшие ранее представления о том, что с развитием
производящего хозяйства (земледелия и скотоводства) здоровье и питание людей
неуклонно улучшается, сейчас опровергнуто: многие распространенные заболевания
редко встречались у древних охотников-собирателей или вообще были им
неизвестны. При переходе к земледелию уменьшилась продолжительность жизни (от
30-40 лет до 20-30), в 2-3 увеличилась рождаемость и одновременно значительно
возросла детская смертность. Костные останки у раннеземледельческих народов
чаще имеют признаки перенесенной анемии, недоедания, различных инфекций, чем у
доземледельческих.

Лишь в средние века наступил перелом – и продолжительность
жизни стала увеличиваться. Заметное улучшение здоровья населения в развитых
странах связано с появлением современной медицины.

К факторам, отличающим современные земледельческие народы,
относятся высокоуглеводная и высокохолестериновая диета, употребление соли, снижение
физической активности, оседлый образ жизни, высокая плотность населения,
усложнение социальной структуры. Адаптация популяций к каждому из этих факторов
сопровождается генетическими изменениями, то есть возрастанием частоты
адаптивных аллелей в популяции. Частота неадаптивных аллелей снижается,
поскольку их носители менее жизнеспособны или имеют меньшую численность
потомков. Так, низкохолестериновая диета охотников-собирателей делает
адаптивной для них способность к интенсивному поглощению холестерина из пищи,
что при современном образе жизни становится фактором риска атеросклероза и
сердечно-сосудистых заболеваний. Эффективное усвоение соли, полезное в прошлом,
когда соль была недоступна, превращается в фактор риска гипертонии. Изменения
популяционных частот аллелей при рукотворном преобразовании среды обитания
человека происходят так, как и при адаптации к природным условиям. Рекомендации
врачей по поддержанию здоровья (физическая активность, прием витаминов и
микроэлементов, ограничение соли) искусственно воссоздают условия, в которых
человек жил большую часть времени своего существования как биологического вида.

Этические аспекты
изучения генетических различий людей

Итак, на формирование генофондов этнических групп влияют
различные процессы – накопление мутаций в изолированных группах, миграции и
смешение народов, адаптация популяций к условиям среды. Генетические различия
не подразумевают превосходства какой-либо расы, этнической или образованной по
любому иному признаку (типу хозяйства или уровню сложности социальной
организации) группы. Напротив, они подчеркивают эволюционную ценность
разнообразия человечества, позволившую ему заселить все климатические зоны
Земли.

Журнал «Энергия» 2005, № 8

Люди, живущие в разных концах Земли, отличаются по многим признакам: языковой принадлежности, культурным традициям, внешности, генетическим особенностям. Генетические характеристики народов зависят от их истории и образа жизни. Различия между ними возникают в изолированных популяциях, не обменивающихся потоками генов (т.е. не смешивающихся из-за географических, лингвистических или религиозных барьеров), за счет случайных изменений частот аллелей и процессов позитивного и негативного естественного отбора.

Случайное изменение частот аллелей в популяции называется генетическим дрейфом. Различия этих частот без действия каких-либо дополнительных факторов обычно невелики. При сокращении численности или отселении небольшой группы, дающей начало новой популяции, частоты аллелей могут сильно колебаться. В новой популяции они будут зависеть от генофонда основавшей ее группы (так называемый эффект основателя - все носители мутации получают ее от общего предка, у которого она возникла). С этим эффектом связывают повышенную частоту болезнетворных мутаций в некоторых этнических группах. Например, у японцев один из видов врожденной глухоты вызывается мутацией, возникшей однократно в прошлом и не встречающейся в других районах мира. У белых австралийцев глаукома связана с мутацией, завезенной переселенцами из Европы. У исландцев найдена мутация, повышающая риск развития рака и восходящая к общему прародителю. Аналогичная ситуация обнаружена у жителей о.Сардиния, но у них мутация другая, отличная от исландской. Среди русских, живущих в Башкортостане, из нескольких сотен мутаций, приводящих к фенилкетонурии, встречается преимущественно одна, что связывают с переселением в этот регион относительно небольшой группы русских, обладавших ею. Эффект основателя - одно из возможных объяснений отсутствия у американских индейцев разнообразия по группам крови ABO: у них преобладает группа О (первая), частота ее более 90%, а во многих популяциях - 100%. Так как Америка заселялась небольшими группами, пришедшими из Азии через перешеек, соединявший эти материки десятки тысяч лет назад, возможно, что в популяции, давшей начало коренному населению Нового Света, другие группы крови отсутствовали.

Слабовредные мутации могут долго поддерживаться в популяции, а вредные, значительно снижающие приспособленность индивида, отсеиваются отбором. Показано, что болезнетворные мутации, вызывающие тяжелые формы наследственных заболеваний, обычно эволюционно молоды. Давно возникшие мутации, длительное время сохраняющиеся в популяции, связаны с более легкими формами болезни.

Адаптация к условиям обитания фиксируется в ходе отбора благодаря случайно возникшим новым аллелям, повышающим приспособленность к данным условиям, или за счет изменения частот давно существующих аллелей. Разные аллели обусловливают варианты фенотипа, например цвета кожи или уровня холестерина крови. Частота аллеля, обеспечивающего адаптивный фенотип (например, темная кожа в зонах с интенсивным солнечным облучением), возрастает, поскольку его носители более жизнеспособны в данных условиях.

Адаптация к различным климатическим зонам проявляется как вариация частот аллелей комплекса генов, географическое распределение которых соответствует климатическим зонам. Однако наиболее заметный след в глобальном распределении генетических изменений оставили миграции народов, связанные с расселением от африканской прародины.

Происхождение и расселение человека. Ранее историю появления вида Homo sapiens на Земле реконструировали на основе палеонтологических, археологических и антропологических данных. В последние десятилетия появление молекулярно-генетических методов и исследования генетического разнообразия народов позволили уточнить многие вопросы, связанные с происхождением и расселением людей современного анатомического типа.

Молекулярно-генетические методы, используемые для восстановления демографической истории, сходны с лингвистической реконструкцией праязыка. Время, когда два родственных языка разделились (т.е. когда исчез их общий предковый праязык), оценивают по количеству различающихся слов, появившихся за период раздельного существования этих языков. Аналогично возраст предковой популяции, общей для двух современных народов, рассчитывают по количеству мутаций, накопившихся в ДНК их представителей. Чем больше различий в ДНК, тем больше времени прошло с момента разделения популяций. Так как скорость накопления мутаций в ДНК известна, по числу мутаций, отличающих две популяции, можно определить дату их расхождения (если предположить, что после разделения они больше не встречались и не смешивались).

Для датировки этого события используют нейтральные мутации, которые не влияют на жизнеспособность индивида и не подвержены действию естественного отбора. Они найдены во всех участках генома человека, но наиболее часто используют мутации в ДНК, содержащейся в клеточных органеллах - митохондриях. В оплодотворенной яйцеклетке присутствует только материнская митохондриальная ДНК (мтДНК), поскольку спермий свои митохондрии яйцеклетке не передает. Для филогенетических исследований мтДНК имеет особые преимущества. Во-первых, она не подвергается рекомбинации, как аутосомные гены, что значительно упрощает анализ родословных. Во-вторых, в клетке она содержится в количестве нескольких сот копий и гораздо лучше сохраняется в биологических образцах.

Первым использовал мтДНК для реконструкции истории человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы мтДНК, полученные из крови людей из всех частей света, и на основе выявленных между ними различий построил филогенетическое древо человечества. Оказалось, что все современные мтДНК могли произойти от мтДНК общей праматери, жившей в Африке. Обладательницу предковой мтДНК тут же окрестили “митохондриальной Евой”, что породило неверные толкования - будто все человечество произошло от одной-единственной женщины. На самом деле у “Евы” было несколько тысяч соплеменниц, просто их мтДНК до наших времен не дошли. Однако все они, без сомнения, оставили свой след: от них мы унаследовали генетический материал хромосом. Характер наследования в данном случае можно сравнить с семейным имуществом: деньги и земли человек может получить от всех предков, а фамилию - только от одного из них. Генетическим аналогом фамилии, передаваемой по женской линии, служит мтДНК, а по мужской - Y-хромосома, передаваемая от отца к сыну.

Изучение мтДНК и ДНК Y-хромосомы подтвердили африканское происхождение человека, позволили установить пути и даты его миграции на основе распространения различных мутаций у народов мира. По современным оценкам, вид H.sapiens появился в Африке более 100 тыс. лет назад, затем расселился в Азии, Океании и Европе. Позже всего была заселена Америка.

Вероятно, исходная предковая популяция H.sapiens состояла из небольших групп, ведущих жизнь охотников-собирателей. Мигрируя, люди несли с собой свои традиции, культуру и свои гены. Возможно, они также обладали и праязыком. Пока лингвистические реконструкции происхождения языков мира ограничены 15-30 тыс. лет, и существование общего праязыка только предполагается. И хотя гены не определяют ни язык, ни культуру, в некоторых случаях генетическое родство народов совпадает и с близостью их языков и культурных традиций. Но есть и противоположные примеры, когда народы меняли язык и перенимали традиции своих соседей. Такая смена происходила чаще в районах контактов различных волн миграций или же в результате социально-политических изменений или завоеваний.


Похожая информация.