Оптические явления. Виды оптических явлений

Атмосфера представляет собой мутную, оптически неоднородную среду. Оптические явления – это результат отражения, преломления и дифракции световых лучей в атмосфере.

В зависимости от причин возникновения все оптические явления делят на четыре группы:

1) явления, обусловленные рассеиванием света в атмосфере (сумерки, заря);

2) явления, обусловленные преломлением световых лучей в атмосфере (рефракцией) – миражи, мерцание звезд и др.;

3) явления, обусловленные преломлением и отражением световых лучей на каплях и кристаллах облаков (радуга, гало);

4) явления, обусловленные дифракцией света в облаках и тумане – венцы, глории.

Сумерки обусловлены рассеиванием солнечного света в атмосфере. Сумерки – это переходный период ото дня к ночи (вечерние сумерки) и от ночи ко дню (утренние сумерки). Вечерние сумерки начинаются с момента захода Солнца и до наступления полной темноты, утренние – наоборот.

Продолжительность сумерек определяется углом между направлением видимого суточного движения Солнца и горизонтом; таким образом, продолжительность сумерек зависит от географической широты: чем ближе к экватору, тем короче сумерки.

Различают три периода сумерек:

1) гражданские сумерки (погружение Солнца под горизонтом не превышает 6 о) – светло;

2) навигационные (погружение Солнца под горизонтом до 12 о) – условия видимости сильно ухудшены;

3) астрономические (погружение Солнца под горизонтом до 18 о) – у земной поверхности уже темно, но на небе еще заметна заря.

Заря – совокупность красочных световых явлений в атмосфере, наблюдаемых перед восходом Солнца или при его заходе. Разнообразие красок зари зависит от положения Солнца относительно горизонта и от состояния атмосферы.

Цвет небесного свода определяется рассеянными видимыми лучами Солнца. В чистой и сухой атмосфере рассеивание света происходит по закону Рэлея. Синие лучи рассеиваются примерно в 16 раз сильнее, чем красные, поэтому цвет неба (рассеянный солнечный свет) – синий (голубой), а цвет Солнца и его лучей у горизонта – красный, т.к. свет в этом случае проходит больший путь в атмосфере.

Большие частицы в атмосфере (капли, пылинки и т.п.) рассеивают свет нейтрально, поэтому облака и туман имеют белый цвет. При большой влажности, запыленности весь небосвод становится не голубым, а белесоватым. Следовательно, по степени синевы неба можно судить о чистоте воздуха и о характере воздушных масс.

Атмосферная рефракция – атмосферные явления, связанные с преломлением световых лучей. Рефракцией обусловлены: мерцание звезд, сплющивание видимого диска Солнца и Луны у горизонта, увеличение продолжительности дня на несколько минут, а также миражи. Мираж – это видимые мнимые изображения на горизонте, над горизонтом или под горизонтом, обусловленные резким нарушением плотности слоев воздуха. Различают нижние, верхние, боковые миражи. Редко наблюдаются движущиеся миражи – «фата-моргана».

Радуга – это светлая дуга, окрашенная во все цвета спектра, на фоне освещенного Солнцем облака, из которого выпадают капли дождя. Внешний край дуги красный, внутренний – фиолетовый. Если Солнце стоит низко над горизонтом, то мы видим лишь половину окружности. Когда Солнце находится высоко, то дуга становится меньше, т.к. центр окружности опускается за горизонт. При высоте Солнца больше 42 о радуга не видна. С самолета можно наблюдать радугу почти полного круга.

Радуга образуется при преломлении и отражении солнечных лучей в капельках воды. Яркость и ширина радуги зависит от размеров капелек. Крупные капли дают менее широкую, но более яркую радугу. При мелких каплях она почти белая.

Гало – это круги или дуги вокруг Солнца и Луны, возникающие в ледяных облаках верхнего яруса (чаще всего в перисто-слоистых).

Венцы – светлые, слегка окрашенные кольца вокруг Солнца и Луны, возникающие в водяных и ледяных облаках верхнего и среднего ярусов, обусловленные дифракцией света.

1. Оптические явления в атмосфере были первыми оптическими эффектами, которые наблюдались человеком. С осмысления природы этих явлений и природы зрения человека начиналось становление проблемы света.

Общее число оптических явлений в атмосфере очень велико. Здесь будут рассмотрены лишь наиболее известные явления – миражи, радуга, гало, венцы, мерцания звёзд, голубой цвет неба и алый цвет зари . Образование этих эффектов связано с такими свойствами света как преломление на границах раздела сред, интерференция и дифракция.

2. Атмосферная рефракция это искривление световых лучей при прохождении через атмосферу планеты . В зависимости от источников лучей различают астрономическую и земную рефракцию. В первом случае лучи идут от небесных тел (звёзд, планет), во втором случае – от земных объектов. В результате атмосферной рефракции наблюдатель видит объект не там, где он находится, или не той формы, какую он имеет.

3. Астрономическая рефракция была известна уже во времена Птолемея (2 в. н.э.). В 1604 г. И. Кеплер предположил, что земная атмосфера имеет независимую от высоты плотность и определённую толщину h (рис.199). Луч 1, идущий от звёзды S прямо к наблюдателю A по прямой, не попадёт в его глаз. Преломившись на границе вакуума и атмосферы, он попадёт в точку В .

В глаз наблюдателя попадёт луч 2, который при отсутствии преломления в атмосфере должен был бы пройти мимо. В результате преломления (рефракции) наблюдатель будет видеть звезду не в направлении S , а на продолжении преломлённого в атмосфере луча, то есть в направлении S 1 .

Угол γ , на который отклоняется к зениту Z видимое положение звезды S 1 по сравнению с истинным положением S , называют углом рефракции . Во времена Кеплера углы рефракции были уже известны по результатам астрономических наблюдений некоторых звёзд. Поэтому данную схему Кеплер использовал для оценки толщины атмосферы h . По его вычислениям получилось h » 4 км. Если считать по массе атмосферы, то это примерно в два раза меньше истинного.

В действительности плотность атмосферы Земли уменьшается с высотой. Поэтому нижние слои воздуха оптически плотнее, чем верхние. Лучи света, идущие наклонно к Земле, преломляются не в одной точке границы вакуума и атмосферы, как в схеме Кеплера, а искривляются постепенно на всём протяжении пути. Это подобно тому, как проходит луч света через стопу прозрачных пластинок, показатель преломления которых тем больше, чем ниже расположена пластинка. Однако суммарный эффект рефракции проявляется так же, как и в схеме Кеплера. Отметим два явления, обусловленные астрономической рефракцией.

а. Видимые положения небесных объектов смещаются к зениту на угол рефракции γ . Чем ниже к горизонту находится звезда, тем заметнее приподнимается её видимое положение на небосклоне по сравнению с истинным (рис.200). Поэтому картина звёздного неба, наблюдаемая с Земли, несколько деформирована к центру. Не смещается только точка S , находящаяся в зените. Благодаря атмосферной рефракции могут наблюдаться звёзды, находящиеся несколько ниже линии геометрического горизонта.


Значения угла рефракции γ быстро убывают с ростом угла β высоты светила над горизонтом. При β = 0 γ = 35" . Это максимальный угол рефракции. При β = 5º γ = 10" , при β = 15º γ = 3" , при β = 30º γ = 1" . Для светил, высота которых β > 30º, рефракционное смещение γ < 1" .

б. Солнце освещает больше половины поверхности земного шара . Лучи 1 - 1, которые должны были бы в отсутствие атмосферы касаться Земли в точках диаметрального сечения DD , благодаря атмосфере касаются её несколько раньше (рис.201).

Поверхности Земли касаются лучи 2 - 2, которые без атмосферы прошли бы мимо. В результате линия терминатора ВВ , отделяющая свет от тени, смещается в область ночного полушария. Поэтому площадь дневной поверхности на Земле больше площади ночной.

4. Земная рефракция . Если явления астрономической рефракции обусловлены глобальным преломляющим эффектом атмосферы , то явления земной рефракции обусловлены локальными изменениями атмосферы , связанными обычно с температурными аномалиями. Наиболее замечательными проявлениями земной рефракции являются миражи .

а. Верхний мираж (от фр. mirage ). Наблюдается обычно в арктических районах с прозрачным воздухом и с низкой температурой поверхности Земли. Сильное выстывание поверхности здесь обусловлено не только низким положением солнца над горизонтом, но и тем, что поверхность, покрытая снегом или льдом, отражает большую часть радиации в космос. В результате в приземном слое с приближением к поверхности Земли очень быстро понижается температура и увеличивается оптическая плотность воздуха.

Искривление лучей в сторону Земли оказывается иногда столь значительным, что наблюдаются предметы, находящиеся далеко за линией геометрического горизонта. Луч 2 на рис.202, который в обычной атмосфере ушёл бы в её верхние слои, в данном случае искривляется к Земле и попадает в глаз наблюдателя.

По-видимому, именно такой мираж представляет собой легендарные “Летучие голландцы” - призраки кораблей, находящихся в действительности на расстоянии в сотни и даже тысячи километров. Удивительно в верхних миражах то, что не наблюдается заметного уменьшения видимых размеров тел.

Например, в 1898 г. экипаж бременского судна “Матадор” наблюдал судно-призрак, видимые размеры которого соответствовали расстоянию 3-5 миль. В действительности, как позднее выяснилось, это судно находилось в это время на расстоянии около тысячи миль. (1 морская миля равна 1852 м). Приземный воздух не только искривляет световые лучи, но и фокусирует их как сложная оптическая система.

В обычных условиях температура воздуха с увеличением высоты падает. Обратный ход температуры, когда с увеличением высоты температура растёт, называют инверсией температуры . Температурные инверсии могут возникать не только в арктических зонах, но и в других, более низких по широте местах. Поэтому верхние миражи могут возникать всюду, где воздух достаточно чист и где возникают температурные инверсии. Например, миражи дальнего видения наблюдаются иногда на побережье Средиземного моря. Инверсия температуры создаётся здесь горячим воздухом из Сахары.

б. Нижний мираж возникает при обратном ходе температуры и наблюдается обычно в пустынях в жаркое время. К полудню, когда солнце высоко, песчаный грунт пустыни, состоящий из частиц твёрдых минералов, разогревается до 50 и более градусов. В то же время на высоте нескольких десятков метров воздух остаётся сравнительно холодным. Поэтому коэффициент преломления выше расположенных слоёв воздуха оказывается заметно больше по сравнению с воздухом возле земли. Это также приводит к искривлению лучей, но в обратную сторону (рис.203).

Лучи света, идущие от низко расположенных над горизонтом частей неба, находящихся напротив наблюдателя, постоянно искривляются кверху и попадают в глаз наблюдателя в направлении снизу вверх. В результате на их продолжении на поверхности земли наблюдатель видит отражение неба, напоминающее водную гладь. Это так называемый “озёрный” мираж.

Эффект ещё более усиливается, когда в направлении наблюдения находятся скалы, возвышенности, деревья, постройки. В этом случае они видны как острова посреди обширного озера. Причём виден не только предмет, но и его отражение. По характеру искривления лучей приземный слой воздуха действует как зеркало водной поверхности.

5. Радуга . Это красочное оптическое явление, наблюдающееся во время дождя, освещённого солнцем и представляющее собой систему концентрических цветных дуг .

Первую теорию радуги разработал Декарт в 1637 г. К этому времени были известны следующие опытные факты, относящиеся к радуге:

а. Центр радуги О находится на прямой, соединяющей Солнце с глазом наблюдателя (рис.204).

б. Вокруг линии симметрии Глаз - Солнце располагается цветная дуга с угловым радиусом около 42°. Цвета располагаются, считая от центра, в порядке: голубой (г), зелёный (з), красный (к) (группа линий 1). Это главная радуга . Внутри главной радуги имеются слабые разноцветные дуги красноватого и зеленоватого оттенков.

в. Вторая система дуг с угловым радиусом около 51° называется вторичной радугой. Её цвета значительно бледнее и идут в обратном порядке, считая от центра, красный, зелёный, голубой (группа линий 2) .

г. Главная радуга появляется лишь тогда, когда солнце находится над горизонтом под углом не более 42°.

Как установил Декарт, основной причиной образования главной и вторичной радуги является преломление и отражение световых лучей в каплях дождя. Рассмотрим основные положения его теории.

6. Преломление и отражение монохроматического луча в капле . Пусть монохроматический луч интенсивностью I 0 падает на сферическую каплю радиуса R на расстоянии y от оси в плоскости диаметрального сечения (рис.205). В точке падения A часть луча отражается, а основная часть интенсивностью I 1 проходит внутрь капли. В точке B большая часть луча проходит в воздух (на рис.205 вышедший в В луч не показан), а меньшая часть отражается и падает в точку С . Вышедший в точке С луч интенсивностью I 3 участвует в образовании главной радуги и слабых вторичных полос внутри главной радуги.

Найдём угол θ , под которым выходит луч I 3 по отношению к падающему лучу I 0 . Заметим, что все углы между лучом и нормалью внутри капли одинаковы и равны углу преломления β . (Треугольники ОАВ и ОВС равнобедренные). Сколько бы луч не “кружился” внутри капли, все углы падения и отражения одинаковы и равны углу преломления β . По этой причине любой луч, выходящий из капли в точках В , С и т.д., выходит под одним и тем же углом, равным углу падения α .

Чтобы найти угол θ отклонения луча I 3 от первоначального, надо просуммировать углы отклонения в точках А , В и С : q = (α – β) + (π – 2β) + (α - β) = π + 2α – 4β . (25.1)

Удобнее измерять острый угол φ = π – q = 4β – 2α . (25.2)

Выполнив расчёт для нескольких сот лучей, Декарт нашёл, что угол φ с ростом y , то есть по мере удаления луча I 0 от оси капли, сначала растёт по абсолютной величине, при y /R ≈ 0,85 принимает максимальное значение, а затем начинает убывать.

Сейчас это предельное значение угла φ можно найти, исследовав функцию φ на экстремум по у . Так как sinα = yçR , а sinβ = yçR ·n , то α = arcsin(yçR ), β = arcsin(yçRn ). Тогда

, . (25.3)

Разнеся члены в разные части равенства и возведя в квадрат, получаем:

, Þ (25.4)

Для жёлтой D -линии натрия λ = 589,3 нм показатель преломления воды n = 1,333. Расстояние точки А вхождения этого луча от оси y = 0,861R . Предельный угол для этого луча равен

Интересно, что точка В первого отражения луча в капле также максимально удалена от оси капли. Исследовав на экстре-мум угол d = p α ε = p α – (p – 2β ) = 2β α по величине у , получаем то же условие, у = 0,861R и d = 42,08°/2 = 21,04°.

На рис.206 показана зависимость угла φ , под которым из капли выходит луч после первого отражения (формула 25.2), от положения точки А входа луча в каплю. Все лучи отражаются внутри конуса с углом при вершине ≈ 42º.

Очень важно для образования радуги то, что лучи, вошедшие в каплю в цилиндрическом слое толщиной уçR от 0,81 до 0,90 , выходят после отражения в тонкой стенке конуса в угловых пределах от 41,48º до 42,08º. Снаружи стенка конуса гладкая (есть экстремум угла φ ), изнутри – рыхлая. Угловая толщина стенки ≈ 20 угловых минут. Для проходящих лучей капля ведёт себя как линза с фокусным расстоянием f = 1,5R . Входят в каплю лучи по всей поверхности первого полушария, отражаются назад расходящимся пучком в пространстве конуса с осевым углом ≈ 42º, а проходят через окно с угловым радиусом ≈ 21º (рис.207).

7. Интенсивность вышедших из капли лучей . Здесь будем говорить лишь о лучах, вышедших из капли после 1-го отражения (рис.205). Если луч, падающий на каплю под углом α , имеет интенсивность I 0 , то прошедший в каплю луч имеет интенсивность I 1 = I 0 (1 – ρ ), где ρ – коэффициент отражения по интенсивности.

Для неполяризованного света коэффициент отражения ρ можно вычислить по формуле Френеля (17.20). Поскольку в формулу входят квадраты функций от разности и суммы углов α и β , то коэффициент отражения не зависит от того, в каплю входит луч, или из капли. Поскольку углы α и β в точках А , В , С одинаковы, то и коэффициент ρ во всех точках А , В , С один и тот же. Отсюда, интенсивности лучей I 1 = I 0 (1 – ρ ), I 2 = I 1 ρ = I 0 ρ (1 – ρ ), I 3 = I 2 (1 – ρ ) = I 0 ρ (1 – ρ ) 2 .

В таблице 25.1 приведены значения углов φ , коэффициента ρ и отношения интенсивности I 3 çI 0 , вычисленные при разных расстояниях уçR входа луча для жёлтой линии натрия λ = 589,3 нм. Как видно из таблицы, при у ≤ 0,8R в луч I 3 попадает меньше 4 % энергии от падающего на каплю луча. И лишь начиная с у = 0,8R и более вплоть до у = R интенсивность вышедшего луча I 3 увеличивается в несколько раз.

Таблица 25.1

y /R α β φ ρ I 3 /I 0
0 0 0 0 0,020 0,019
0,30 17,38 12,94 16,99 0,020 0,019
0,50 29,87 21,89 27,82 0,021 0,020
0,60 36,65 26,62 33,17 0,023 0,022
0,65 40,36 29,01 35,34 0,025 0,024
0,70 44,17 31,52 37,73 0,027 0,025
0,75 48,34 34,09 39,67 0,031 0,029
0,80 52,84 36,71 41,15 0,039 0,036
0,85 57,91 39,39 42,08 0,052 0,046
0,90 63,84 42,24 41,27 0,074 0,063
0,95 71,42 45,20 37,96 0,125 0,095
1,00 89,49 48,34 18,00 0,50 0,125

Итак, лучи, выходящие из капли под предельным углом φ , имеют значительно большую по сравнению с другими лучами интенсивность по двум причинам. Во-первых, за счёт сильного углового сжатия пучка лучей в тонкой стенке конуса, а во-вторых, за счёт меньших потерь в капле. Лишь интенсивность этих лучей достаточна для того, чтобы вызвать в глазу ощущение блеска капли.

8. Образование главной радуги . При падении на каплю света вследствие дисперсии луч расщепляется. В результате стенка конуса яркого отражения расслаивается по цветам (рис.208). Фиолетовые лучи (l = 396,8 нм) выходят под углом j = 40°36", красные (l = 656,3 нм) – под углом j = 42°22". В этом угловом интервале Dφ = 1°46" заключён весь спектр выходящих из капли лучей. Фиолетовые лучи образуют внутренний конус, красные – внешний. Если освещённые солнцем дождевые капли видит наблюдатель, то те из них, лучи конуса которых попадают в глаз, видятся наиболее яркими. В итоге все капли, находящиеся по отношению к солнечно-му лучу, проходящему через глаз наблюдателя, под углом красного конуса, видятся красными, под углом зелёного -зелёными (рис.209).

9. Образование вторичной радуги происходит благодаря лучам, выходящим из капли после второго отражения (рис.210). Интенсивность лучей после второго отражения примерно на порядок меньше по сравнению с лучами после первого отражения и имеет примерно такой же ход с изменением уçR .

Лучи, выходящие из капли после второго отражения образуют конус с углом при вершине ≈ 51º. Если у первичного конуса гладкая сторона снаружи, то у вторичного изнутри. Между этими конусами практически нет лучей. Чем крупнее капли дождя, тем ярче радуга. С уменьшением размеров капель радуга бледнеет. При переходе дождя в морось с R ≈ 20 – 30 мкм радуга вырождается в белесоватую дугу с практически неразличимыми цветами.

10. Гало (от греч. halōs - кольцо) – оптическое явление, представляющее собой обычно радужные круги вокруг диска Солнца или Луны с угловым радиусом 22º и 46º. Эти круги образуются в результате преломления света находящимися в перистых облаках ледяными кристаллами, имеющими форму шестигранных правильных призм.

Снежинки, падающие на землю, очень разнообразны по форме. Однако кристаллики, образующиеся в результате конденсации паров в верхних слоях атмосферы, имеют, в основном, форму шестигранных призм. Из всех возможных вариантов прохождения луча через шестигранную призму наиболее важны три (рис.211).

В случае (а) луч проходит через противоположные парал-лельные грани призмы, не расщепляясь и не отклоняясь.

В случае (б) луч проходит через грани призмы, образующие между собой угол 60º, и преломляется как в спектральной призме. Интенсивность луча, выходящего под углом наименьшего отклонения 22º, максимальна. В третьем случае (в) луч проходит через боковую грань и основание призмы. Преломляющий угол 90º, угол наименьшего отклонения 46º. В обоих последних случаях белые лучи расщепляются, голубые лучи отклоняются больше, красные – меньше. Случаи (б) и (в) обуславливают появление колец, наблюдающихся в проходящих лучах и имеющих угловые размеры 22º и 46º (рис.212).

Обычно наружное кольцо (46º) ярче внутреннего и оба они имеют красноватый оттенок. Это объясняется не только интенсивным рассеиванием голубых лучей в облаке, но и тем, что дисперсия голубых лучей в призме больше, чем красных. Поэтому голубые лучи выходят из кристаллов сильно расходящимся пучком, из-за чего их интенсивность уменьшается. А красные лучи выходят узким пучком, имеющим значительно большую интенсивность. При благоприятных условиях, когда удаётся различать цвета, внутренняя часть колец красная, внешняя – голубая.

10. Венцы – светлые туманные кольца вокруг диска светила. Их угловой радиус много меньше радиуса гало и не превышает 5º. Венцы возникают вследствие дифракционного рассеяния лучей на образующих облако или туман водяных каплях.

Если радиус капли R , то первый дифракционный минимум в параллельных лучах наблюдается под углом j = 0,61∙lçR (см. формулу 15.3). Здесь l - длина волны света. Дифракционные картины отдельных капель в параллельных лучах совпадают, в результате интенсивность светлых колец усиливается.

По диаметру венцов можно определять размер капель в облаке. Чем крупнее капли (больше R ), тем меньше угловой размер кольца. Самые большие кольца наблюдаются от самых мелких капель. На расстояниях несколько километров дифракционные кольца ещё заметны, когда размер капель не менее 5 мкм. В этом случае j max = 0,61lçR ≈ 5 ¸ 6°.

Окраска светлых колец венцов проявляется очень слабо. Когда она заметна, то наружный край колец имеет красноватый цвет. То есть распределение цветов в венцах обратно распределению цветов в кольцах гало. Помимо угловых размеров это также позволяет различать венцы и гало между собой. Если в атмосфере присутствуют капли широкого спектра размеров, то кольца венцов, налагаясь друг на друга, образуют общее светлое сияние вокруг диска светила. Это сияние называют ореолом .

11. Голубой цвет неба и алый цвет зари . Когда Солнце находится выше горизонта, безоблачное небо видится голубым. Дело в том, что из лучей солнечного спектра в соответствии с законом Рэлея I расс ~ 1/l 4 наиболее интенсивно рассеиваются короткие синие, голубые и фиолетовые лучи.

Если Солнце находится низко над горизонтом, то его диск воспринимается багрово-красным по этой же причине. Благодаря интенсивному рассеянию коротковолнового света до наблюдателя доходят, в основном, слабо рассеивающиеся красные лучи. Рассеяние лучей от восходящего или заходящего Солнца особенно велико ещё потому, что лучи проходят большое расстояние вблизи поверхности Земли, где концентрация рассеивающих частиц особенно велика.

Утренняя или вечерняя заря – окрашивание близкой к Солнцу части неба в розовый цвет – объясняется дифракционным рассеянием света на кристалликах льда в верхних слоях атмосферы и геометрическим отражением света от кристаллов.

12. Мерцание звёзд – это быстрые изменения блеска и цвета звёзд, особенно заметные вблизи горизонта. Мерцание звёзд обусловлено преломлением лучей в быстро пробегающих струях воздуха, которые из-за разной плотности имеют разный показатель преломления. В результате слой атмосферы, через который проходит луч, ведёт себя как линза с переменным фокусным расстоянием. Она может быть как собирающей, так и рассеивающей. В первом случае свет концентрируется, блеск звезды усиливается, во втором – свет рассеивается. Такая перемена знака регистрируется до сотни раз в секунду.

Вследствие дисперсии луч разлагается на лучи разных цветов, которые идут по разным путям и могут расходиться тем больше, чем ниже звезда к горизонту. Расстояние между фиолетовыми и красными лучами от одной звезды может достигать у поверхности Земли 10 метров. В результате наблюдатель видит непрерывное изменение блеска и цвета звезды.

Лицей Петру Мовилэ

Курсовая работа по физике на тему:

Оптические атмосферные явления

Работа ученицы 11А класса

Болюбаш Ирины

Кишинёв 2006 -

План:

1. Введение

а) Что такое оптика?

б) Виды оптики

2. Земная атмосфера, как оптическая система

3. Солнечный закат

а) Цветовое изменение неба

б) Солнечные лучи

в) Неповторимость солнечных закатов

4. Радуга

а) Образование радуги

б) Разнообразие радуг

5. Полярные сияния

а) Виды полярных сияний

б) Солнечный ветер, как причина возникновения полярных сияний

6. Гало

а) Свет и лёд

б) Кристаллики-призмы

7. Мираж

а) Объяснение нижнего («озерного») миража

б) Верхние миражи

в) Двойные и тройные миражи

г) Мираж сверхдальнего видения

д) Легенда альпийских гор

е) Парад суеверий

8. Некоторые загадки оптических явлений

Введение

Что такое оптика?

Первые представления древних ученых о свете были весьма наивны. Считалось, что из глаз выходят особые тонкие щупальца и зрительные впечатления возникают при ощупывании ими предметов. Тогда под оптикой понимали науку о зрении. Именно такой точный смысл слова «оптика». В средние века оптика постепенно из науки о зрении превратилась в науку о свете. Этому способствовало изобретение линз и камеры-обскуры. В современное время оптика - это раздел физики, в котором исследуется испускание света, его распространение в различных средах и взаимодействие с веществом. Что же касается вопросов, связанных со зрением, устройство и функционирование глаза, то они выделились в специальное научное направление, называемое физиологической оптикой.

Понятие "оптика", в совремённой науке, имеет многогранное значение. Это и атмосферная оптика, и молекулярная оптика, и электронная оптика, и нейтронная оптика, и нелинейная оптика, и голография, и радиооптика, и пикосекундная оптика, и адаптивная оптика, и многие другие явления и методы научных исследований, тесно связанные с оптическими явлениями.

Большинство из перечисленных видов оптики, как физическое явление, доступны нашему наблюдению только при использовании специальных технических устройств. Это могут быть лазерные установки, излучатели рентгеновских лучей, радиотелескопы, плазменные генераторы и многие другое. Но наиболее доступным и, вместе с тем, наиболее красочным оптическими явлениями являются атмосферные. Огромные по своим масштабам, они суть – порождение взаимодействия света и атмосферы земли.

Земная атмосфера, как оптическая система

Наша планета окружена газовой оболочкой, которую мы называем атмосферой. Обладая наибольшей плотностью у земной поверхности и постепенно разрежаясь с поднятием вверх, она достигает толщины более сотни километров. И это не застывшая газовая среда с однородными физическими данными. Наоборот, атмосфера земли находится в постоянном движении. Под воздействием различных факторов, её слои перемешиваются, меняют плотность, температуру, прозрачность, перемещаются на большие расстояния с различной скоростью.

Для лучей света, идущих от солнца или других небесных светил, земная атмосфера представляет собой своеобразную оптическую систему с постоянно меняющимися параметрами. Оказываясь на их пути, она и отражает часть света, рассеивает его, пропускает его сквозь всю толщу атмосферы, обеспечивая освещённость земной поверхности, в определённых условиях, разлагает его на составляющие и искривляет ход лучей, вызывая, тем самим, различные атмосферные явления. Наиболее необычные красочные из них это солнечный закат, радуга, северное сияние, мираж, солнечное и лунное гало.

Солнечный закат

Самым простым и доступным для наблюдения атмосферным явлением является закат нашего небесного светила – Солнца. Необычайно красочный, он никогда не повторяется. А картина неба и изменение её в процессе заката столь ярка, что вызывает восхищение у каждого человека.

Приближаясь к горизонту, Солнце не только теряет яркость, но и начинает постепенно менять свой цвет - в его спектре во все возрастающей степени подавляется коротковолновая часть (красные цвета). Одновременно начинает окрашиваться и небо. В окрестности Солнца оно приобретает желтоватые и оранжевые тона, а над противосолнечной частью горизонта появляется бледная полоса со слабо выраженной гаммой цветов.

К моменту захода Солнца, уже принявшего темно-красный цвет, вдоль солнечного горизонта вытягивается яркая полоса зари, окраска которой изменяется снизу вверх от оранжево-желтой до зеленовато голубой. Над ней раскидывается округлое яркое почти неокрашенное сияние. В то же время у противоположного горизонта начинает медленно подниматься синевато-серый тусклый сегмент тени Земли, окаймленный розовым поясом ( "Пояс Венеры").

По мере того как Солнце опускается глубже под горизонт, возникает быстро расплывающееся розовое пятно - так называемый "пурпурный свет" , достигающий наибольшего развития при глубине Солнца под горизонтом около 4-5 o . Облака и вершины гор заливают алые и пурпурные тона, а если облака или высокие горы находятся за горизонтом, то их тени протягиваются около солнечной стороны неба и становятся насыщеннее. У самого горизонта небо густо краснеет, а по ярко окрашенному небу от горизонта к горизонту тянутся светлые лучи в виде отчетливых радиальных полос ( "Лучи Будды"). Тем временем тень Земли быстро надвигается на небо, ее очертания становятся расплывчатыми, а розовое окаймление еле заметным. Постепенно пурпурный свет затухает, облака темнеют, их силуэты отчетливо выступают на фоне блекнущего неба и только у горизонта, там где скрылось Солнце, сохраняется яркий разноцветный сегмент зари. Но и он постепенно сокращается и бледнеет и к началу астрономических сумерек превращается в зеленовато-белесую узкую полосу. Наконец, исчезает и она - наступает ночь.

Описанную картину следует рассматривать лишь как типичную для ясной погоды. В действительности характер течения заката подвержен широким вариациям. При повышенной замутненности воздуха цвета зари обычно бывают блеклыми, особенно у горизонта, где вместо красных и оранжевых тонов иногда появляется только слабая бурая окраска. Нередко одновременные заревые явления развиваются по-разному в различных участках неба. Каждый закат обладает неповторимой индивидуальностью, и это следует рассматривать как одну из наиболее характерных их черт.

Крайняя индивидуальность течения заката и многообразие сопровождающих его оптических явлений зависит от различных оптических характеристик атмосферы - в первую очередь ее коэффициентов ослабления и рассеяния, которые по-разному проявляется в зависимости от зенитного расстояния Солнца, направления наблюдения и высоты наблюдателя.

Радуга

Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще мало знали об окружающем мире, радугу считали «небесным знамением». Так, древние греки думали, что радуга - это улыбка богини Ириды.

Радуга наблюдается в стороне, противоположной Солнцу, на фоне дождевых облаков или дождя. Разноцветная дуга обычно находится от наблюдателя на расстоянии 1-2 км, а иногда ее можно наблюдать на расстоянии 2-3 м на фоне водяных капель, образованных фонтанами или распылителями воды.

Центр радуги находится на продолжении прямой, соединяющей Солнце и глаз наблюдателя – на противосолнечной линии. Угол между направлением на главную радугу и противосолнечной линией составляет 41º - 42º

В момент восхода солнца противосолнечная точка находится на линии горизонта, и радуга имеет вид полуокружности. По мере поднятия Солнца противосолнечная точка опускается под горизонт и размер радуги уменьшается. Она представляет собой лишь часть окружности.

Часто наблюдается побочная радуга, концентрическая с первой, с угловым радиусом около 52º и обратным расположением цветов.

Основная радуга образуется за счёт отражения света в каплях воды. А побочная радуга образуется в результате двукратного отражения света внутри каждой капли. В этом случае лучи света выходят из капли под другими углами, чем те, которые дают основную радугу, и цвета в побочной радуге располагаются в обратной последовательности.

Ход лучей в капле воды: а - при одном отражении, б - при двух отражениях

При высоте Солнца 41º главная радуга перестает быть видимой и над горизонтом выступает лишь часть побочной радуги, а при высоте Солнца более 52º не видна и побочная радуга. Поэтому в средних экваториальных широтах в околополуденные часы это явление природы никогда не наблюдается.

У радуги различают семь основных цветов, плавно переходящих один в другой. Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.

Фараджова Лейла

Часто мы наблюдаем в небе необъяснимые явления. Данная работа раскрывает суть явления происходящих в атмосфере земли.

Скачать:

Предварительный просмотр:

МОУ «Песчановская средняя общеобразовательная школа»

VI районная научно-практическая конференция

Оптические явления в атмосфере

6 класс МОУ «Песчановская СОШ»

Руководитель:

Маковчук Татьяна Геннадьевна

Учитель физики

С. Песчаное

2010 г.

Введение 3

Земная атмосфера как оптическая система 4

Виды оптических явлений 5

Вывод 12

Литературы 13

Приложение 14

Введение

Целью данной работы является рассмотрение оптических атмосферных явлений, их физической природы. Наиболее доступными и вместе с тем, наиболее красочными оптическими явлениями являются, атмосферные. Огромные по своим масштабам, это - порождение взаимодействия света и атмосферы земли.

31 декабря в канун Нового года, в южной части неба не высоко над горизонтом можно было наблюдать необычное явление. В центре диск солнца и по бокам ещё два, а над ними радужное сияние. Это было очень красивое и завораживающее зрелище. Сразу стало интересно, что это, как оно образуется, почему и какие ещё явления могут происходить в атмосфере? Это необычное атмосферное явление и легло в основу моей работы.

Земная атмосфера как оптическая система

Наша планета окружена газовой оболочкой, которую мы называем атмосферой. Обладая наибольшей плотностью у земной поверхности и постепенно разрежаясь с поднятием вверх, она достигает толщины более сотни километров. И это не застывшая газовая среда с однородными физическими данными. Наоборот, атмосфера Земли находится в постоянном движении. Под воздействием различных факторов, её слои перемешиваются, меняют плотность, температуру, прозрачность, перемещаются на большие расстояния с различной скоростью.

Для лучей света, идущих от Солнца или других небесных светил, земная атмосфера представляет собой своеобразную оптическую систему с постоянно меняющимися параметрами. Оказываясь на их пути, она и отражает часть света, рассеивает его, пропускает его сквозь всю толщу атмосферы, обеспечивая освещённость земной поверхности, в определённых условиях, разлагает его на составляющие и искривляет ход лучей, вызывая, тем самим, различные атмосферные явления. Наиболее необычные красочные из них это солнечный закат, радуга, северное сияние, миражи, солнечное и лунное гало и многое другое.

Виды оптических явлений

Существует очень много видов оптических явлений. Остановимся на некоторых из них.

Гало

(от греч. χαλοσ — «круг», «диск»; также а́ура, нимб, орео́л) - это явление преломления и отражения света в ледяных кристалликах облаков верхнего яруса. Представляют собой светлые или радужные круги вокруг Солнца или Луны, отделенные от светила темным промежутком. Гало часто наблюдаются в передней части циклонов и поэтому могут служить признаком их приближения. Иногда можно наблюдать и лунные гало.

Появляясь в воздухе при замерзании водяных капелек, ледяные кристаллы принимают обыкновенно одну из трех форм шестисторонних правильных призм (рис.1 А): призмы, в которых длина очень велика по сравнению с их сечением; это — всем известные ледяные иголочки, в морозные зимние дни массами реющие в самых нижних слоях атмосферы.

А. Б. В.

(рис.1)

Падая свободно в воздухе, такие иголочки располагаются длинной осью вертикально. Плоскости этих кристаллов, которые кружась, постепенно опускаются на землю, большую часть времени ориентированы параллельно поверхности. На восходе или закате, луч зрения наблюдателя может проходить через эту самую плоскость, и каждый кристалл может вести как миниатюрная линза, преломляющая солнечный свет.

В другого рода призмах высота очень мала сравнительно с сечением; тогда получаются шестисторонние плоские таблички (рис.1Б.). Иногда, наконец, ледяные кристаллики принимают форму призмы, сечение которой представляет собой шестилучевую звезду (рис.1 В.). Падая на ледяные кристаллики, луч света, в зависимости от вида кристалла и его положения относительно луча, может прямо или пройти через него без преломления, или лучи должны претерпеть в них не только преломление, но и целый ряд полных внутренних отражений. В действительности очень редко, конечно, удается наблюдать явление, все части которого были бы одинаково ярки и отчетливо видны: обыкновенно то та, то другая его часть развита ярче и характернее, остальные или наблюдаются весьма слабо, или даже отсутствуют.

Обыкновенный круг или малое гало — это блестящий круг, окружающий светило, его радиус — около 22°. Он окрашен в красноватый цвет с внутренней стороны, затем слабо заметен желтый, далее цвет переходит в белый и постепенно сливается с общим голубоватым тоном неба. Пространство внутри круга кажется сравнительно темным; внутренняя граница круга резко очерчена. Круг этот образуется преломлением света в ледяных иглах, носящихся во всевозможных положениях в воздухе. Угол наименьшего отклонения лучей в ледяной призме — приблизительно 22°, поэтому все лучи, прошедшие сквозь кристаллики, должны показаться наблюдателю отклоненными от источника света по крайней мере на 22°; отсюда — темнота внутреннего пространства. Красный цвет, как наименее преломляемый, покажется и наименее отклоненным от светила; за ним идет желтый; остальные лучи, смешиваясь между собой, дадут впечатление белого цвета. Реже встречается гало с угловым радиусом 46°, располагающееся концентрически вокруг 22-градусного гало. Его внутренняя сторона тоже имеет красноватый оттенок. Причиной этого также является преломление света, происходящее в этом случае в ледяных иглах, обращенных к светилу углами в 90°; круг этот обыкновенно бледнее малого, но цвета в нем разделены резче. Ширина кольца такого гало превышает 2,5 градуса. Как 46-градусные, так и 22-градусные гало, как правило, имеют наибольшую яркость в верхней и нижней частях кольца. Изредка встречающееся 90-градусное гало представляет собой слабо светящееся, почти бесцветное кольцо, имеющее общий центр с двумя другими гало. Если оно окрашено, то имеет красный цвет на внешней стороне кольца. Механизм возникновения такого типа гало до конца не выяснен.

Нередко можно пронаблюдать и за лунным гало. Это довольно частое зрелище и возникает оно, если небо затянуто высокими тонкими облаками с миллионами крошечных кристалликов льда. Каждый ледяной кристалл выступает в роли миниатюрной призмы. Большинство кристаллов имеют форму вытянутых шестигранников. Свет входит через одну лицевую поверхность такого кристалла и выходит через противоположную с углом преломления 22 º .

Наблюдая зимой за уличными фонарями, можно, увидеть гало, порожденное их светом, при определенных, конечно, условиях, а именно в морозном воздухе, насыщенном ледяными кристалликами или снежинками. Кстати говоря, гало от Солнца в виде большого светлого столба может возникнуть и во время снегопада. Случаются зимой такие дни, когда снежинки как бы плавают в воздухе, а сквозь неплотные облака упрямо пробивается солнечный свет. На фоне вечерней зари этот столб выглядит иногда красноватым - будто отблеск далекого пожара. В прошлом такое вполне, как видим, безобидное явление приводило в ужас суеверных людей.

Можно видеть и такое гало: светлое, окрашенное в радужные тона кольцо вокруг Солнца. Этот вертикальный круг возникает тогда, когда в атмосфере находится много шестигранных ледяных кристалликов, не отражающих, а преломляющих солнечные лучи подобно стеклянной призме. При этом большинство лучей, естественно, рассеивается и до наших глаз не доходит. Но какая-то их часть, пройдя сквозь эти находящиеся в воздухе призмочки и преломившись, до нас доходит, вот мы и видим радужный круг вокруг Солнца. Радиус его около двадцати двух градусов. Бывает и больше - в сорок шесть градусов.

Замечено, что гало-круг всегда более ярок по бокам. Это потому, что здесь пересекаются два гало - вертикальное и горизонтальное. И ложные солнца образуются чаще всего именно в месте пересечения. Наиболее благоприятные условия для появления ложных солнц складываются тогда, когда Солнце стоит невысоко над горизонтом и часть вертикального круга уже нам не видна.

Какие же кристаллики участвуют в этом «представлении»?

Ответ на вопрос дали специальные эксперименты. Оказалось, что ложные Солнца появляются благодаря шестигранным кристаллам льда, по своей форме напоминающим... гвозди. Они плавают в воздухе вертикально, преломляя свет своими боковыми гранями.

Третье «солнце» появляется, когда над настоящим солнцем видна лишь одна верхняя часть гало-круга. Порой это отрезок дуги, иной раз светлое пятно неопределенной формы. Иногда ложные солнца не уступают по яркости самому Солнцу. Наблюдая их, древние летописцы и писали о трех солнцах, об отрубленных огненных головах и т.п.

В связи с этим явлением в истории человечества зафиксирован любопытный факт. В 1551 году немецкий город Магдебург был осажден войсками испанского короля Карла V. Стойко держались защитники города, уже больше года длилась осада. Наконец раздраженный король отдал приказ готовиться к решительной атаке. Но тут произошло невиданное: за несколько часов до штурма над осажденным городом засияли три солнца. Смертельно напуганный король решил, что Магдебург защищают небеса, и приказал снять осаду.

Радуга - это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде.

В религиозных представлениях народов древности радуге приписывалась роль моста между землей и небом. В греко-римской мифологии известна даже особая богиня радуги - Ирида. Греческие ученые Анаксимен и Анаксагор считали, что радуга возникает за счет отражения Солнца в темном облаке. Аристотель изложил представления о радуге в специальном разделе своей «Метеорологии». Он считал, что радуга возникает благодаря отражению света, но не просто от всего облака, а от его капель.

В 1637 году знаменитый французский философ и ученый Декарт дал математическую теорию радуги, основанную на преломлении света. Впоследствии эта теория была дополнена Ньютоном на основании его опытов по разложению света на цвета с помощью призмы. Дополненная Ньютоном теория Декарта не могла объяснить одновременного существования нескольких радуг, различной их ширины, обязательного отсутствия в цветных полосах некоторых цветов, влияния размеров капель облака на внешний вид явления. Точную теорию радуги на основе представлений о дифракции света дал в 1836 году английский астроном Д. Эри. Рассматривая пелену дождя как пространственную структуру, обеспечивающую возникновение дифракции, Эри объяснил все особенности радуги. Его теория полностью сохранила свое значение и для нашего времени.

Радуга - это оптическое явление, возникающее в атмосфере и имеющее вид разноцветной дуги на небесном своде. Наблюдается она в тех случаях, когда солнечные лучи освещают завесу дождя, расположенную на противоположной Солнцу стороне неба. Центр дуги радуги находится в направлении прямой, проходящей через солнечный диск (хотя бы и скрытый от наблюдения тучами) и глаз наблюдателя, т.е. в точке, противоположной Солнцу. Дуга радуги представляет собой часть круга, описанного вокруг этой точки радиусом в 42°30" (в угловом измерении).

Интересно расположение цветов в радуге. Оно всегда постоянно. Красный цвет главной радуги расположен на ее верхнем крае, фиолетовый - на нижнем. Между этими крайними цветами следуют друг за другом остальные цвета в такой же последовательности, как в солнечном спектре. В принципе в радуге никогда не бывают представлены все цвета спектра. Чаще всего в ней отсутствуют или слабо выражены синий, темно-синий и насыщенный чисто красный цвета. С увеличением размеров капель дождя происходит сужение цветных полос радуги, сами же цвета становятся более насыщенными. Преобладание в явлении зеленых тонов обычно указывает на последующий переход к хорошей погоде. Общая картина цветов радуги имеет размытый характер, так как образуется она протяженным источником света.

При искусственном воспроизведении явления в лаборатории удавалось получать до 19 радуг. Над водоемом могут наблюдаться дополнительные радуги, расположенные друг относительно друга неконцентрично. Для одной из них источником света является Солнце, для другой - его отражение от водной поверхности. В этих условиях могут встречаться и радуги, расположенные «вверх ногами». Ночью при лунном освещении и туманной погоде в горах и на берегах морей можно наблюдать белую радугу. Такой тип радуги может возникать и при воздействии солнечного света на туман. Она имеет вид блестящей белой дуги, с внешней стороны окрашенной в желтоватый и оранжево-красный цвета, а изнутри - в сине-фиолетовый. Радуга наблюдается не только на пелене дождя. В меньших масштабах ее можно увидеть на каплях воды у водопадов, фонтанов и в морском прибое. При этом в качестве источника света могут служить не только Солнце и Луна, но и прожектор.

Полярное сияние — свечение (люминесценция) верхних слоёв атмосферы планеты, обладающей магнитосферой, вследствие её взаимодействия с заряженными частицами солнечного ветра. В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета. Полярные сияния наблюдают в двух основных формах - в виде лент и в виде облакоподобных пятен. Интенсивные вспышки сияния часто сопровождаются звуками, напоминающими шум, треск. Полярные сияния вызывают сильные изменения в ионосфере, что в свою очередь влияет на условия радиосвязи. В большинстве случаев радиосвязь значительно ухудшается. Возникают сильные помехи, а иногда полная потеря приема.

Мираж - простейшие видел любой из нас. Например, когда едешь по нагретой асфальтированной дороге, далеко впереди она выглядит как водная поверхность. И подобное уже давно никого не удивляет, ибо мираж - не что иное, как атмосферное оптическое явление, благодаря которому в зоне видимости появляются изображения предметов, которые при обычных условиях скрыты от наблюдения. Происходит это потому, что свет при прохождении через слои воздуха разной плотности преломляется. Удаленные объекты при этом могут оказаться поднятыми или опущенными относительно их действительного положения, а также могут исказиться и приобрести неправильные, фантастические формы.

Призраки Броккена - в некоторых районах земного шара, когда тень находящегося на возвышенности наблюдателя при восходе или заходе Солнца сзади него падает на облака, расположенные на небольшом расстоянии, обнаруживается поразительный эффект: тень приобретает колоссальные размеры. Это происходит из-за отражения и преломления света мельчайшими капельками воды в тумане. Описанное явление носит название по имени вершины в горах Гарц в Германии.

Огни святого Эльма - светящиеся бледно-голубые или фиолетовые кисти длиной от 30 см до 1 м и более, обычно на верхушках мачт или концах рей находящихся в море судов. Иногда кажется, что весь такелаж судна покрыт фосфором и светится. Огни святого Эльма порой возникают на горных вершинах, а также на шпилях и острых углах высоких зданий. Это явление представляет собой кистевые электрические разряды на концах электропроводников, когда в атмосфере вокруг них сильно повышается напряженность электрического поля.

Вывод

Физическая природа света интересовала людей с незапамятных времён. Но, прежде чем утвердился совремённый взгляд на природу света, и световой луч нашёл своё применение в жизни человека, были выявлены, описаны, научно обоснованы и экспериментально подтверждены многие оптические явления, повсеместно возникающие в атмосфере Земли, от известной каждому радуги, до сложных, периодических миражей. Но, не смотря на это, причудливая игра света всегда привлекала и привлекает человека. Никого не оставляет равнодушным ни созерцание зимнего гало, ни яркого солнечного заката, ни широкой, в пол неба, полосы северного сияния, ни скромной лунной дорожки на водной глади. Световой луч, проходя сквозь атмосферу нашей планеты, не просто освещает её, но и придаёт ей неповторимый вид, делая прекрасной.

Конечно, в атмосфере нашей планеты происходит значительно больше оптических явлений, о которых говориться в этой работе. Среди них есть как хорошо знакомые нам и разгаданные учёными, так и те, которые ещё ждут своих первооткрывателей. И нам остаётся лишь надеяться, что, со временем, мы станем свидетелями всё новых и новых открытий в области оптических атмосферных явлений, свидетельствующих о многогранности обыкновенного светового луча.

Литература

Блудов М.И.«Беседы по физике, часть II» - М.: Просвещение, 1985 г.

Булат В.Л.«Оптические явления в природе» - М.: Просвещение, 1974 г.

Гершензон Е.М., Малов Н.Н., Мансуров А.Н. «Курс общей физики» - М.: Просвещение, 1988 г.

Королев Ф.А. «Курс физики» М., «Просвещение» 1988 г.

Мякишев Г.Я. Буховцев Б.Б.«Физика 10 - М.: Просвещение, 1987 г.

Тарасов Л.В. «Физика в природе» - М.: Просвещение, 1988 г.

Тарасов Л.В. «Физика в природе» - М.: Просвещение, 1988 г.

Трубников П.Р. ПокусаевН.В.«Оптика и атмосфера - Санкт-Петербург: Просвещение, 2002 г.

ШахмаевН.М. Шодиев Д.Ш. «Физика 11 - М.: Просвещение, 1991 г.

Ресурсы интернета

Приложение

Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают более узкую радугу, с резко выделяющимися цветами, малые - дугу расплывчатую, блеклую и даже белую.

Одним из красивейших оптических явлений природы является полярное сияние.

Озерные, или нижние миражи - самые распространенные

мираж, давно всем известное природное явление...

фотография, призрак Броккена, тень горы, наблюдаемая на фоне вечерних облаков:

Гало - одно из красивейших и необычных явлений природы

22 апреля 2016

В школе изучает тему «Оптические явления в атмосфере» 6 класс. Однако она представляет интерес не только для пытливого детского ума. Оптические явления в атмосфере, с одной стороны, объединяют радугу, изменение цвета неба во время рассветов и закатов, не раз виденные всеми. С другой - в их число входят таинственные миражи, ложные Луны и Солнца, впечатляющие гало, в прошлом наводившие ужас на людей. Механизм образования некоторых из них до конца остается непонятным и сегодня, однако общий принцип, по которому «живут» оптические явления в природе, современная физика хорошо изучила.

Воздушная оболочка

Атмосфера Земли представляет собой оболочку, состоящую из смеси газов и простирающуюся примерно на 100 км над уровнем моря. Плотность воздушного слоя меняется по мере удаления от земли: наибольшее ее значение у поверхности планеты, с высотой оно уменьшается. Атмосферу нельзя назвать статичным формированием. Слои газовой оболочки постоянно двигаются, перемешиваются. Меняются их характеристики: температура, плотность, скорость перемещения, прозрачность. Все эти нюансы оказывают влияние на солнечные лучи, устремляющиеся к поверхности планеты.

Оптическая система

Процессы, происходящие в атмосфере, а также ее состав способствуют поглощению, преломлению и отражению световых лучей. Часть их достигает цели — земной поверхности, другая рассеивается или же перенаправляется обратно в космическое пространство. В результате искривления и отражения света, распада части лучей на спектр и так далее образуются разнообразные оптические явления в атмосфере.

Видео по теме

Атмосферная оптика

Во времена, когда наука только зарождалась, люди объясняли оптические явления исходя из сложившихся представлений об устройстве Вселенной. Радуга соединяла человеческий мир с божественным, появление на небе двух ложных Солнц свидетельствовало о приближающихся катастрофах. Сегодня большинство феноменов, пугавших наших далеких предков, получило научное объяснение. Изучением подобных феноменов занимается атмосферная оптика. Оптические явления в атмосфере эта наука описывает, основываясь на законах физики. Она способна объяснить, почему небо голубое днем, а во время захода и рассвета меняет цвет, как образуется радуга и откуда берутся миражи. Многочисленные исследования и эксперименты сегодня позволяют понять такие оптические явления в природе, как появление светящихся крестов, Фата-моргана, радужные гало.

Синее небо

Цвет неба настолько привычен, что мы редко задумываемся, почему он такой. Тем не менее физикам ответ хорошо известен. Ньютон доказал, что луч света при определенных условиях раскладывается на спектр. При прохождении атмосферы его часть, соответствующая синему цвету, рассеивается лучше. Красный участок видимого излучения характеризуется большей длинной волны и уступает фиолетовому по степени рассеивания в 16 раз.

При этом небо мы видим не фиолетовым, а голубым. Причина этого кроется в особенностях устройства сетчатки и соотношении участков спектра в солнечном свете. Наши глаза более чувствительны к синему, а фиолетовый участок в спектре светила менее интенсивный, чем синий.

Алый закат


Когда люди разобрались, что такое атмосфера, оптические явления перестали быть для них свидетельством или предзнаменованием грозных событий. Однако научный подход не мешает получать эстетическое удовольствие от красочных закатов и нежных рассветов. Яркие красные и оранжевые цвета вместе с розовым и голубым постепенно уступают ночной темноте или утреннему свету. Невозможно наблюдать два одинаковых рассвета или заката. А причина этого кроется во все той же подвижности атмосферных слоев и смене погодных условий.

Во время закатов и рассветов солнечные лучи преодолевают более длинный путь до поверхности, чем днем. В результате рассеянный фиолетовый, синий и зеленый уходят в стороны, а прямой свет окрашивается в красный и оранжевый. Свою лепту в картину заката и рассвета вносят облака, пыль или частички льда, взвешенные в воздухе. Свет преломляется, проходя через них, и окрашивает небо в самые разные оттенки. На противоположном от Солнца участке горизонта нередко можно наблюдать так называемый Пояс Венеры — розовую полосу, разделяющую ночное темное небо и голубое дневное. Красивое оптическое явление, названное в честь римской богини любви, видно перед рассветом и после заката.

Радужный мост

Пожалуй, никакие другие световые явления в атмосфере не вызывают в памяти столько мифологических сюжетов и сказочных образов, сколько связаны с радугой. Дуга или окружность, состоящая из семи цветов, каждому известна с детства. Красивое атмосферное явление, возникающее во время дождя, когда солнечные лучи проходят сквозь капли, завораживает даже тех, кто досконально изучил его природу.

А физика радуги сегодня ни для кого не секрет. Солнечный свет, преломляясь каплями дождя или тумана, расщепляется. В результате наблюдатель видит семь цветов спектра, от красного до фиолетового. Границы между ними определить невозможно. Цвета плавно переходят друг в друга через несколько оттенков.

При наблюдении радуги солнце всегда располагается за спиной человека. Центр улыбки Ириды (так называли радугу древние греки) располагается на линии, проходящей через наблюдателя и дневное светило. Обычно радуга предстает в виде полуокружности. Ее размер и форма зависят от положения Солнца и точки, в которой находится наблюдатель. Чем выше светило над горизонтом, тем ниже опускается окружность возможного появления радуги. Когда Солнце преодолевает отметку в 42º над горизонтом, наблюдатель на поверхности Земли не может увидеть радугу. Чем выше над уровнем моря располагается человек, желающий полюбоваться улыбкой Ириды, тем вероятнее, что он увидит не дугу, но окружность.

Двойная, узкая и широкая радуга


Нередко вместе с основной можно увидеть так называемую побочную радугу. Если первая образуется в результате однократного отражения света, то вторая является результатом двойного. Кроме того, основная радуга отличается определенным порядком цветов: красный располагается на внешней стороне, а фиолетовый — на внутренней, которая ближе к поверхности Земли. Побочный же «мостик» представляет собой обратный по последовательности спектр: фиолетовый оказывается вверху. Происходит так потому, что при двойном отражении из капли дождя лучи выходят под другими углами.

Радуги различаются по интенсивности цвета и ширине. Самые яркие и довольно узкие появляются после летней грозы. Большие капли, характерные для такого дождя, рождают хорошо заметную радугу с отчетливо различимыми цветами. Малые капли дают более расплывчатую и менее заметную радугу.

Оптические явления в атмосфере: полярное сияние


Одно из самых красивых атмосферных оптических явлений — полярное сияние. Оно характерно для всех планет, обладающих магнитосферой. На Земле полярные сияния наблюдаются в высоких широтах обоих полушарий, в зонах, окружающих магнитные полюса планеты. Чаще всего можно видеть зеленоватое или сине-зеленое свечение, иногда дополненное по краям всполохами красного и розового. Интенсивное полярное сияние по форме напоминает ленты или складки ткани, при затухании превращающиеся в пятна. Полосы высотой в несколько сотен километров хорошо выделяются по нижнему краю на фоне темного неба. Верхняя граница полярного сияния теряется в вышине.

Эти красивые оптические явления в атмосфере еще хранят свои тайны от людей: до конца не изучен механизм возникновения некоторых видов свечения, причина возникающего во время резких всполохов треска. Однако общая картина формирования полярных сияний сегодня известна. Небо над северным и южным полюсами украшается зеленовато-розовым свечением, когда заряженные частицы солнечного ветра сталкиваются с атомами верхних слоев земной атмосферы. Последние в результате взаимодействия получают дополнительную энергию и испускают ее в виде света.

Гало

Солнце и Луна нередко предстают перед нами окруженные свечением, напоминающим нимб. Это гало — хорошо заметное кольцо вокруг источника света. В атмосфере чаще всего оно образуется благодаря мельчайшим частичкам льда, составляющим перистые облака высоко над Землей. В зависимости от формы и размеров кристаллов меняются характеристики явления. Часто гало приобретает вид радужного круга в результате разложения светового луча на спектр.

Интересная разновидность явления носит название паргелий. В результате преломления света в кристаллах льда на уровне Солнца образуется два светлых пятна, напоминающих дневное светило. В исторических хрониках можно встретить описания этого феномена. В прошлом оно часто считалось предвестником грозных событий.

Мираж

Миражи — это тоже оптические явления в атмосфере. Они возникают в результате преломления света на границе между значительно различающимися по плотности слоями воздуха. В литературе описано множество случаев, когда путник в пустыне видел оазисы или даже города и замки, которых быть поблизости не могло. Чаще всего это «нижние» миражи. Они возникают над ровной поверхностью (пустыня, асфальт) и представляют собой отраженное изображение неба, кажущееся наблюдателю водоемом.

Так называемые верхние миражи встречаются реже. Они образуются над холодной поверхностью. Верхние миражи бывают прямыми и перевернутыми, иногда совмещают оба положения. Самым известным представителем этих оптических феноменов является Фата-моргана. Это сложный мираж, совмещающий сразу несколько типов отражений. Перед наблюдателем предстают реально существующие объекты, многократно отраженные и перемешенные.

Атмосферное электричество

Электрические и оптические явления в атмосфере нередко упоминаются вместе, хотя причины их возникновения различны. Поляризация облаков и образование молний связаны с процессами, протекающими в тропосфере и ионосфере. Гигантские искровые разряды формируются обычно во время грозы. Молнии возникают внутри облаков, могут ударять в землю. Они являются угрозой для жизни людей, и это одна из причин научного интереса к подобным явлениям. Некоторые свойства молний до сих пор остаются загадкой для исследователей. Сегодня неизвестна причина возникновения шаровых молний. Как и в случае с некоторыми аспектами теории полярных сияний и миражей, электрические феномены продолжают интриговать ученых.

Оптические явления в атмосфере, кратко описанные в статье, с каждым днем становятся все более понятными для физиков. При этом они, как и молнии, не перестают восхищать людей своей красотой, таинственностью и порой грандиозностью.