Свойства элементов IV (14) группы главной подгруппы. Общая характеристика элементов IV- А группы

К элементам главной подгруппы IV группы относятся углерод (С), кремний (Si), германий (Ge), олово (Sn) и свинец (Pb). В ряду элементы настолько отличаются по своей химической природе, что при изучении их свойств целесообразно производить разбиение на две подгруппы: углерод и кремний составляют подгруппу углерода, германий, олово, свинец - подгруппу германия.


Общая характеристика подгруппы

Сходство элементов:


Одинаковая структура внешнего электронного слоя атомов ns 2 nр 2 ;


Р-элементы;


Высшая С.О. +4;


Типичные валентности II, IV.

Валентные состояния атомов

Для атомов всех элементов возможны 2 валентных состояния:


1. Основное (невозбужденное) ns 2 np 2


2. Возбужденное ns 1 np 3

Простые вещества

Элементы подгруппы в свободном состоянии образуют твердые вещества, в большинстве случаев - с атомной кристаллической решеткой. Характерна аллотропия


Как физические, так и химические свойства простых веществ существенным образом различаются, причем вертикальные изменения часто имеют немонотонный характер. Обычно подгруппу делят на две части:


1 - углерод и кремний (неметаллы);


2 - германий, олово, свинец (металлы).


Олово и свинец являются типичными металлами, германий, как и кремний, - полупроводники.

Оксиды и гидроксиды

Низшие оксиды ЭО

CO и SiO - несолеобразующие оксиды


GeO, SnO, PbO - амфотерные оксиды

Высшие оксиды ЭО +2 О

CO 2 и SiO 2 - кислотные оксиды


GeO 2 , SnO 2 , PbO 2 - амфотерные оксиды


Существуют многочисленные гидроксопроизводные типа ЭО nН 2 O и ЭO 2 nН 2 O, которые проявляют слабокислотные или амфотерные свойства.

Соединения с водородом ЭН 4

Ввиду близости значений ЭО связи Э-Н являются ковалентными, малополярными. Гидриды ЭН 4 при обычных условиях представляют собой газы, плохо растворимые в воде.


СН 4 - метан; SiH 4 - силан; GeH 4 - герман; SnH 4 - станнан; PbH 4 - не получен.


Прочность молекул ↓


Химическая активность


Восстановительная способность


Метан химически малоактивен, остальные гидриды очень реакционноспособны, они полностью разлагаются водой с выделением водорода:


ЭН 4 + 2Н 2 O = ЭO 2 + 4Н 2


ЭН 4 + 6Н 2 O = Н 2 [Э(ОН) 6 ] + 4Н 2

Способы получения

Гидриды ЭН 4 получают косвенным путем, так как прямой синтез из простых веществ возможен только в случае СН 4 , но и эта реакция протекает обратимо и в очень жестких условиях.


Обычно для получения гидридов используют соединения соответствующих элементов с активными металлами, например:


Аl 4 С 3 + 12Н 2 O = ЗСН 4 + 4Al(OH) 2


Mg 2 Si + 4HCl = SiH 4 + 2MgCl 2

Углеводороды, кремневодороды, германоводороды.

Углерод с водородом, кроме СН 4 , образует бесчисленное множество соединений С x Н y - углеводородов (предмет изучения органической химии).


Получены также кремневодороды и германоводороды общей формулы Э n Н 2n+2 . Практического значения не имеют.


По значимости 2 элемента главной подгруппы IV группы занимают особое положение. Углерод является основой органических соединений, следовательно - главным элементом живой материи. Кремний - главный элемент всей неживой природы.

К р-элементам IV группы относятся углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ. В соответствии с электронными конфигурациями их атомов углерод и кремний относятся к типическим элементам, а германий, олово и свинец составляют подгруппу германия. Углерод существенно отличается от других р-элементов группы высоким значением энергии ионизации. Углерод - типичный неметаллический элемент. В ряду С-Si-Ge-Sn-Pb энергия ионизации уменьшается, а следовательно, неметаллические признаки элементов ослабевают, металлические усиливаются. В изменении свойств атомов и соединений в этом ряду проявляется вторичная периодичность. В большинстве неорганических соединений углерод проявляет степени окисления -4, +4, +2. В природе углерод находится в виде двух стабильных изотопов: 12С (98,892%) и 13С (1,108%). Его содержание в земной коре составляет 0,15% (мол.доли). В земной коре углерод находится в составе карбонатных минералов (прежде всего СаС0 3 и MgCO 3), каменного угля, нефти, а также в виде графита и реже алмаза. Углерод - главная составная часть животного и растительного мира. Аллотропные модификации: Алмаз - кристаллическое вещество с атомной координационной кубической решеткой. Графит - слоистое кристаллическое вещество с гексагональной структурой. Атомы углерода объединяются в макромолекулы С 2∞ , представляющие собой бесконечные слои из шестичленных колец. К а р б и н - черный порошок (ρ=1,9-2 г/см3); его решетка гексагональная, построена из прямолинейных цепочек С ∞ , в которых каждый атом образует по две σ-и π-связи. Молекулы фуллерена состоят из 60, 70 атомов, образующих сферу - геодезический купол. Фуллерен получен при испарении графита и конденсации его паров в атмосфере гелия при высоком давлении.Фуллерен химически стоек. Благодаря сферической форме молекул С 60 , С 70 фуллерен весьма тверд. Кремний - электронный аналог углерода. Степень окисления кремния в его соединениях изменяется от -4 до +4. В соединениях кремния при образовании ковалентных связей его координационное число не превышает шести. Германий Ge, олово Sn и свинец Pb - полные электронные аналоги. Как и у типических элементов группы, валентными у них являются s 2 р 2 -электроны. В ряду Ge-Sn-Pb уменьшается роль внешней s-электронной пары в образовании химических связей. Изменение характерных степеней окисления в ряду С-Si-Ge- -Sn-Pb можно объяснить вторичной периодичностью в различии энергии ns- и nр-орбиталей.

В ряду Ge-Sn-Pb отчетливо усиливаются металлические свойства простых веществ. Германий - серебристо-серое вещество с металлическим блеском, внешне похож на металл, но имеет алмазоподобную решетку. Олово полиморфно. В обычных условиях оно существует в виде β-модификации {белое олово), устойчивой выше 14 °С. При охлаждении белое олово переходит в α-модификацию (серое олово) со структурой типа алмаза. Переход β→α сопровождается увеличением удельного объема (на 25%), в связи с чем олово рассыпается в порошок. Свинец - темно-серый металл с типичной для металлов структурой гранецентрированного куба. Соединения углерода с водородом называются углеводороды. Метан СН 4 - Его молекула имеет тетраэдрическую форму. Метан - бесцветный, не имеющий запаха газ (т.пл. -182,49 °С, т.кип. -161,56 °С), химически весьма инертен вследствие валентной и координационной насыщенности молекулы. На него не действуют кислоты и щелочи. Однако он легко загорается; его смеси с воздухом чрезвычайно взрывоопасны. Метан - основной компонент природного (60-90%) рудничного и болотного газа. Содержится в виде клатратов в земной коре. В больших количествах образуется при коксовании каменного угля. Богатые метаном газы используются как высококалорийное топливо и сырье для производства водяного газа. Этан С 2 Н 6 , этилен С 2 Н 4 и ацетилен С 2 Н 2 в обычных условиях - газы. Вследствие высокой прочности связи С 2 Н 6 (Е= 347кДж/моль), С 2 Н 4 (Е=598 кДж/моль) и С 2 Н 2 (Е=811 кДж/моль) в отличие от Н 2 0, N 2 H 4 и в особенности N 2 H 2 вполне устойчивы и химически малоактивны. Силаны, соединения кремния с водородом общей формулы Si n H 2n+2 - Получены силаны до окта-силана Si 8 Hi 18 . Малой прочностью связи Si-Si обусловлена ограниченность гомологического ряда кремневодородов. При комнатной температуре первые два силана - моносилан SiH 4 и дисилан Si 2 H 6 - газообразны, Si 3 H 8 - жидкость, остальные - твердые вещества. Все силаны бесцветны, имеют неприятный запах, ядовиты. В отличие от связи С-Н связь Si-H имеет более ионный характер. На воздухе самовоспламеняются. В природе силаны не встречаются.

IV группа главная подгруппа

Применение

Германий широко используется как полупро­водник. Почти половина производимого олова идет на из­готовление жести, главным потребителем которой является производство консервов. Значительное количество олова рас­ходуется на получение сплавов – бронзы (медь + 10 – 20% Sn). Оксид олова (IV) применяется для изготовления полупроводни­ковых сенсоров. Химические полупроводниковые сенсоры – чувствительные элементы на основе SnО 2 , In 2 O 3 , ZnO, TiO, преобразующие энергию химического процесса в электри­ческую. Взаимодействие определяемого газа (О 2 , СО, NО 2) с чувствительным материалом сенсора вызывает обратимое изменение его электропроводности, которое регистрируется электронным устройством.

К элементам IV (14 по новой номенклатуре ЮПАК) группы главной подгруппы относятся: углерод С, кремний Si, германий Ge, олово Sn, свинец Pb.

В основном состоянии атомы пниктогенов имеют электронную конфигурацию внешнего энергетического уровня – …ns 2 np 2 , где n – главное квантовое число (номер периода). Для атомов элементов IV группы главной подгруппы характерны следующие степени окисления: для углерода – (–4, 0, +2, +4); для кремния – (–4, 0, (+2), +4); для германия – ((–4), 0, +2, +4); для олова – (0, +2, +4), для свинца – (0, +2, +4).

Устойчивость соединений с высшей степенью окисления +4 максимальна для кремния и понижается в ряду Ge – Sn – Pb. Это объясняется тем, что затраты энергии на перевод электрона с s на p подуровень не компенсируются энергией образующихся химических связей. Устойчивость соединений со степенью окисления +2 возрастает.

В табл. 1 представлены основные свойства IV (14) группы главной подгруппы.

Свойство С Si Ge Sn Pb
Заряд ядра
Электронная конфигурация внешнего энергетического уровня в основном состоянии …2s 2 2p 2 …3s 2 3p 2 …4s 2 4p 2 …5s 2 5p 2 …6s 2 6p 2
Орбитальный радиус, пм
Энергия ионизации , эВ 11,26 8,15 7,90 7,34 7,42
Энергия сродства к электрону, , эВ 1,26 1,38 1,2 1,2
Температура плавления, ºС 3300 (субл.)
Температура кипения, ºС
Электроотрицательность: по Полингу по Оллреду-Рохову 2,55 2,50 1,90 1,74 2,01 2,02 1,96 1,72 2,33 1,55

В IV группе главной подгруппе сверху вниз орбитальный радиус увеличивается. Неравномерное изменение радиуса при переходе от Si к Ge и от Sn к Pb обусловлено эффектами d и f-сжатия. Электроны 3d и 4f-подуровней слабо экранируют заряд ядер атомов. Это приводит к сжатию электронных оболочек германия и свинца из-за повышения эффективного заряда ядра.



В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус также увеличивается, энергия ионизации уменьшается, восстановительные свойства атомов возрастают.

Углерод отличается от других атомов элементов IV группы главной подгруппы высоким значением энергии ионизации.

Атом углерода не имеет свободных d-орбиталей, валентные электроны атома углерода (... 2s 2 2p 2) слабо экранированы от действия ядра, что объясняет небольшой радиус атома углерода и высокие значения энергии ионизации и электроотрицательности.

В IV группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус увеличивается, энергия сродства к электрону уменьшается, окислительные свойства атомов уменьшаются.

Энергия сродства к электрону у атома углерода меньше, чем у атома кремния, что связано с небольшим радиусом атома углерода и сильным межэлектронным отталкиванием при присоединении электрона к атому.

В IV группе главной подгруппе сверху вниз энергия ионизации уменьшается, энергия сродства к электрону уменьшается, электроотрицательность уменьшается.

С изменением энергии ионизации свойства элементов IV группы главной подгруппы изменяются от типичных неметаллов к металлам. Углерод и кремний – типичные неметаллы, германий – металлоид с характерными металлическими свойствами, олово, свинец – металл.

В IV группе главной подгруппе сверху вниз температуры плавления и кипения уменьшаются.

Понижение температуры плавления обусловлено увеличением доли металлической связи.

IVА-группу периодической системы элементов Д.И. Менделеева составляют углерод, кремний, германий, олово, свинец. Общая электронная формула валентной оболочки атомов элементов IVА-группы.

Атомы этих элементов имеют по четыре валентных электрона на s- и р-орбиталях внешнего энергетического уровня. В невозбужденном состоянии не спарены два р-электрона. Следовательно, в соединениях эти элементы могут проявлять степень окисления +2. Но в возбужденном состоянии электроны внешнего энергетического уровня приобретают конфигурацию пs1пр3 , и все 4 электрона оказываются неспаренными.

Например, для углерода переход с s-подуровня на р-подуровень можно представить следующим образом.

В соответствии с электронным строением возбужденного состояния элементы IVА-группы могут проявлять в соединениях степень окисления +4. Радиусы атомов элементов IVА-группы закономерно возрастают с увеличением порядкового номера. В этом же направлении закономерно снижается энергия ионизации и электроотрицательность.

При переходе в группе С--Si--Gе--Sn--Рb уменьшается роль неподеленной электронной пары на внешнем s-подуровне при образовании химических связей. Поэтому если для углерода, кремния и германия наиболее характерна степень окисления +4, то для свинца +2.

В живом организме углерод, кремний и германий находятся в степени окисления +4, для олова и свинца характерна степень окисления +2.

В соответствии с возрастанием размеров атомов и падением энергии ионизации при переходе от углерода к свинцу неметаллические свойства ослабевают, так как снижается способность присоединять электроны и увеличивается легкость их отдачи. Действительно, первые два члена группы: углерод и кремний -- типичные неметаллы, германий, олово и свинец -- амфотерные элементы с ярко выраженными металлическими свойствами у последнего.

Усиление металлических признаков в ряду С--Si--Gе--Sn--Рb проявляется и в химических свойствах простых веществ. В обычных условиях элементы С, Si, Gе и Sn устойчивы по отношению к воздуху и воде. Свинец же окисляется на воздухе. В электрохимическом ряду напряжений металлов Gе располагается после водорода, а Sn и Рb непосредственно перед водородом. Поэтому германий не реагирует с кислотами типа НСl и разбавленной Н2SО4.

Электронное строение и размер атома, среднее значение электроотрицательности объясняют прочность связи С--С и склонность атомов углерода к образованию длинных гомоцепей:

Благодаря промежуточному значению электроотрицательности углерод образует малополярные связи с жизненноважными элементами -- водородом, кислородом, азотом, серой и др.

Химические свойства кислородных соединений углерода и кремния. Среди неорганических соединений углерода, кремния и их аналогов для медиков и биологов наибольший интерес представляют кислородные соединения этих элементов.

Углерод (IV) и кремний (IV) оксиды ЭО2 являются кислотными, и соответствующие им гидроксиды Н2ЭО3 -- слабыми кислотами. Соответствующие оксиды и гидроксиды остальных элементов IVА-группы амфотерны.

Диоксид углерода СО2. постоянно образуется в тканях организма в процессе обмена веществ и играет важную роль в регуляции дыхания и кровообращения. Диоксид углерода является физиологическим стимулятором дыхательного центра. Большие концентрации СО2 (свыше 10%) вызывают сильный ацидоз -- снижение рН крови, бурную одышку и паралич дыхательного центра.

Диоксид углерода растворяется в воде. При этом в растворе образуется угольная кислота:

Н2О + СО2 ? Н2СО3

Равновесие смещено влево, поэтому большая часть углерода диоксида находится в виде гидрата СО2 Н2О, а не Н2СО3. Угольная кислота Н2СО3 существует только в растворе. Относится к слабым кислотам.

Как двухосновная кислота, Н2СО3 образует средние и кислые соли: первые называются карбонатами: Nа2СО3, СаСО3 --карбонаты натрия и кальция; вторые -- гидрокарбонатами: NаНСО3, Са(НСО3)2 --гидрокарбонаты натрия и кальция. Все гидрокарбонаты хорошо растворимы в воде; из средних солей растворимы карбонаты щелочных металлов и аммония.

Растворы солей угольной кислоты вследствие гидролиза имеют щелочную реакцию (рН>7), например:

Nа2СО3 + НОН? NаНСО3 + NаОН

СО32- + НОН? НСO3- + ОН-

Водородкарбонатная буферная система (Н2СО3--НСО3-) служит главной буферной системой плазмы крови, обеспечивающей поддержание кислотно-основного гомеостаза, постоянного значения рН крови порядка 7,4.

Так как при гидролизе карбонатов и гидрокарбонатов получается щелочная среда, эти соединения применяют в медицинской практике в качестве антацидных (нейтрализующих кислоты) средств при повышенной кислотности желудочного сока. К ним относятся гидрокарбонат натрия NаНСО3 и карбонат кальция СаСО3:

NаНСО3 + НСl = NaСl + Н2О + СО2

СаСО3 + 2НСl = СаСl2 + Н2О + СО2

В силикатный цемент, содержащий SiO2, добавляется жидкость, которая представляет собой водный раствор ортофосфорной кислоты Н3РО4, частично нейтрализованный оксидом цинка ZnО и гидроксидом алюминия Аl(ОН)3. Процесс «схватывания» силикат-цемента начинается с разложения порошка ортофосфорной кислотой с образованием коллоидных растворов фосфата алюминия и кремниевых кислот переменного состава xSiO2 yН2О:

Аl2О3 + 2Н3РО4 = 2АlРО4 + 3Н2О

хSiO2 + уН3О+ = хSiO2 уН2О + yН+

В процессе приготовления пломб в результате перемешивания происходят химические реакции с образованием фосфатов металлов, например

3СаО + 2Н3РО4 = Са3(РО4)2 + 3Н2О

В воде хорошо растворимы силикаты только щелочных металлов. При действии минеральных кислот на растворы силикатов получают кремниевые кислоты, например метакремниевую Н2SiO3 и ортокремниевую Н4SiO4.

Кремниевые кислоты слабее угольной, они выпадают в осадок при действии СО2 на растворы силикатов. Силикаты сильно гидролизуются. Это является одной из причин разрушения силикатов в природе.

При сплавлении различных смесей силикатов друг с другом или с кремнием диоксидом получаются прозрачные аморфные материалы, называемые стеклами.

Состав стекла может изменяться в широких пределах и зависит от условий получения.

Кварцевое стекло (почти чистый кремнезем) переносит резкие изменения температуры, почти не задерживает ультрафиолетовые лучи. Такое стекло используют для приготовления ртутно-дуговых ламп, которые широко применяют в физиотерапии, а также стерилизации операционных.

Фарфоровые массы, применяемые в ортопедической стоматологии, состоят из кварца SiO2 (15--35%) и алюмосиликатов: полевого шпата Э2О Аl2О3 6SiO2, где Э-- К, Na или Са (60--75%), и каолина Аl2О3 2SiO2 2Н2О (3--10%). Соотношение компонентов может меняться в зависимости от назначения фарфоровой массы.

Полевой шпат К2О Аl2О3 6SiO2 -- основной материал для получения стоматологических фарфоровых масс. При плавлении он превращается в вязкую массу. Чем больше полевого шпата, тем прозрачнее фарфоровая масса после отжига. При отжиге фарфоровых масс полевой шпат, как более легкоплавкий, понижает температуру плавления смеси.

Каолин (белая глина) -- необходимая часть стоматологического фарфора. Добавка каолина уменьшает текучесть фарфоровой массы.

Кварц, входящий в состав стоматологического фарфора, упрочняет керамическое изделие, придает ему большую твердость и химическую стойкость.

Моноксид углерода СО. Из соединений элементов IVА-группы, в которых они проявляют степень окисления +2, интерес для медиков и биологов представляет оксид углерода (II) СО. Это соединение ядовито и чрезвычайно опасно, потому что не имеет запаха.

Оксид углерода (II) -- угарный газ -- продукт неполного окисления углерода. Как это ни парадоксально, одним из источников СО является сам человек, организм которого производит и выделяет во внешнюю среду (с выдыхаемым воздухом) за сутки около 10мл СО. Это так называемый эндогенный оксид углерода (II), который образуется в процессах кроветворения.

Проникая с воздухом в легкие, оксид углерода (II) быстро проходит через альвеолярно-капиллярную мембрану, растворяется в плазме крови, диффундирует в эритроциты и вступает в обратимое химическое взаимодействие как с окисленным НbО2, так и с восстановленным гемоглобином Нb:

НbО2 + СО? НbСО + О2

Нb + СО? НbСО

Образующийся карбонилгемоглобин НbСО не способен присоединять к себе кислород. Вследствие этого становится невозможным перенос кислорода от легких к тканям.

Высокое химическое сродство оксида углерода (II) СО к двухвалентному железу является основной причиной взаимодействия СО с гемоглобином. Можно полагать, что и другие бионеорганические соединения, содержащие ионы Fе2+, должны реагировать с этим ядом.

Так как реакция взаимодействия оксигемоглобина с угарным газом обратима, то повышение в дыхательной среде парциального давления О2 будет ускорять диссоциацию карбонилгемоглобина и выделение СО из организма (равновесие смешается влево по принципу Ле Шателье):

НbО2 + СО? НbСО + О2

В настоящее время имеются лечебные препараты, которые используют в качестве антидотов при отравлении организма оксидом углерода (II). Например, введение восстановленного железа резко ускоряет удаление СО из организма в виде, очевидно, карбонила железа. Действие этого препарата основано на способности СО выступать в качестве лиганда в различных комплексах.

Химические свойства соединений олова и свинца. Оксиды олова (II) и свинца (II), SnО и РbО амфотерны, так же как и соответствующие им гидроксиды Sn(ОН)2 и Рb(ОН)2.

Соли Рb2+ -- ацетат, нитрат -- хорошо растворимы в воде, малорастворимы хлорид и фторид, практически нерастворимы сульфат, карбонат, хромат, сульфид. Все соединения свинца (II), в особенности растворимые, ядовиты.

Биологическая активность свинца определяется его способностью проникать в организм и накапливаться в нем.

Свинец и его соединения относятся к ядам, действующим преимущественно на нервно-сосудистую систему и непосредственно на кровь. Химизм токсического действия свинца весьма сложен. Ионы Рb2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVА-группы. Они образуют прочные комплексы с биолигандами.

Ионы Рb2+ способны взаимодействовать и блокировать сульфгидрильные группы SН белков, в молекулах ферментов, участвующих в синтезе порфиринов, регулирующих синтез тема и других биомолекул:

R--SН + Рb2+ + НS--R > R--S--Рb--S--R + 2Н+

Часто ионы Рb2+ вытесняют естественные ионы М2+, ингибируя металлоферменты ЕМ2+:

ЕМ2+ + Рb2+ > ЕРb2+ + М2+

Вступая в реакции с цитоплазмой микробных клеток и тканей, ионы свинца образуют гелеобразные альбуминаты. В небольших дозах соли свинца оказывают вяжущее действие, вызывая гелефикацию белков. Образование гелей затрудняет проникновение микробов внутрь клеток и снижает воспалительную реакцию. На этом основано действие свинцовых примочек.

По мере увеличения концентрации ионов Рb2+ образование альбуминатов приобретает необратимый характер, накапливаются альбуминаты белков R--СООН поверхностных тканей:

Рb2+ + 2R--СООН = Рb(R--СОО)2 + 2Н+

Поэтому препараты свинца (II) оказывают преимущественно вяжущее действие на ткани. Их назначают исключительно для наружного применения, поскольку, всасываясь в желудочно-кишечном тракте или дыхательных путях, они проявляют высокую токсичность.

Неорганические соединения олова (II) не очень ядовиты, в противоположность органическим соединениям олова.

Читайте также:
  1. A. Характеристика нагрузки на организм при работе, которая требует мышечных усилий и энергетического обеспечения
  2. III Расчет количеств исходных веществ, необходимых для синтеза
  3. III. Характеристика ведомственных целевых программ и мероприятий подпрограммы
  4. III. Характеристика ведомственных целевых программ и мероприятий подпрограммы
  5. III. Характеристика ведомственных целевых программ и мероприятий подпрограммы
  6. IV. Определение массы вредных (органических и неорганических) веществ, сброшенных в составе сточных вод и поступивших иными способами в водные объекты

В главную подгруппу IV группы периодической системы входят элементы: углерод, кремний, германий, олово и свинец. Углерод и кремний являются типичными неметаллами, а олово и свинец – типичными металлами. Германий занимает промежуточное положение. При обычных температурах он полупроводник, имеет атомную кристаллическую решётку и очень хрупок, проявляет неметаллические свойства. Однако при повышенных температурах германий приобретает характерные металлические свойства, такие как пластичность и высокую электропроводность.

Атомы углерода, кремния, германия, олова и свинца в основном состоянии имеют сходную структуру внешнего электронного слоя и относятся к р-элементам:

Si 3s23p23d0

Ge 3d104s24p24d0

Sn 4d105s25p25d0

Pb 4f145d106s26p26d0

Однако полными электронными аналогами являются только германий, олово и свинец – у них одинаковая электронная конфигурация и внешнего уровня и предыдущего подуровня. Они обладают близкими химическими свойствами.

Так как число неспаренных электронов в основном состоянии – 2, а в валентно-возбуждённом – 4, то основные валентности всех элементов II и IV. Начиная с кремния, р-элементы IV группы имеют вакантные d-орбитали. Это определяет возможность образования связей по донорно-акцепторному механизму и приводит к увеличению валентности в координационных соединениях до VI. Ввиду отсутствия d-подуровня у атома углерода его валентность в соединениях не может быть более IV, и углерод, в отличие от Si, Ge, Sn и Pb, не способен образовывать комплексные соединения. Это обстоятельство, а также самый маленький размер атома и наибольшая электроотрицательность углерода объясняют, почему химические свойства этого элемента существенно отличаются не только от химических свойств германия, олова и свинца, но и от химических свойств кремния.

Благодаря своему электронному строению и средним значениям электроотрицательности все элементы имеют характерные степени окисления -4, +2, +4. Как и у всех элементов главных подгрупп периодической системы, при движении сверху вниз устойчивость соединений «крайних» степеней окисления (-4 и +4) уменьшается, а степени окисления +2 увеличивается.

Общая характеристика четвертой группы главной подгруппы:

а) свойства элементов с точки зрения строения атома;

б) степени окисления;

в) свойства оксидов;

г) свойства гидроксидов;

д) водородные соединения.

а) Углерод (С), кремний (Si), германий (Ge), олово (Sn), свинец (РЬ) - элементы 4 группы главной подгруппы ПСЭ. На внешнем электронном слое атомы этих элементов имеют 4 электрона: ns2np2. В подгруппе с ростом порядкового номера элемента увеличивается атомный радиус, неметаллические свойства ослабевают, а металлические усиливаются: углерод и кремний - неметаллы, германий, олово, свинец - металлы.

б) Элементы этой подгруппы проявляют как положительную, так и отрицательную степени окисления: -4, +2, +4.

в) Высшие оксиды углерода и кремния (С02, Si02) обладают кислотными свойствами, оксиды остальных элементов подгруппы - амфотерны (Ge02, Sn02, Pb02).

г) Угольная и кремниевая кислоты (Н2СО3, H2SiO3) - слабые кислоты. Гидроксиды германия, олова и свинца амфотерны, проявляют слабые кислотные и основные свойства: H2GeO3= Ge(OH)4, H2SnO3 = Sn(ОН)4, Н2РЬО3 = Pb(OH)4.

д) Водородные соединения:

СН4; SiH4, GeH4. SnH4, PbH4. Метан - CH4 - прочное соединение, силан SiH4 - менее прочное соединение.

Схемы строения атомов углерода и кремния, общие и отличительные свойства.

Si 1S22S22P63S23p2.

Углерод и кремний - это неметаллы, так как на внешнем электронном слое 4 электрона. Но так как кремний имеет больший радиус атома, то для него более характерна способность отдавать электроны, чем для углерода. Углерод - восстановитель:

Углерод - неметалл. Основные кристаллические модификации углерода - алмаз и графит.

Кремний - неметалл темно-серого цвета. Составляет 27,6 % массы земной коры.

Германий - металл серебристо-серого цвета. Плотность германия в твёрдом состоянии равна 5,327 г/см3, в жидком -5,557 г/см3.

Олово - ковкий, легкий металл серебристо-белого цвета.

Свинец - ковкий металл серого цвета. Элемент довольно мягок, можно без затруднения порезать ножом.

Флеровий - искусственный сверхтяжёлый радиоактивный элемент. Из известных изотопов наиболее устойчив289Fl. Период полураспада составляет около 2,7 секунд для 289Fl и 0,8 секунды для 288Fl.


| | | | 5 |