Методы расчета тепловых эффектов химических реакций при различных температурах.

Задача № 6

Вычислите среднюю теплоемкость вещества, приведенного в табл. 6, в интервале температур от 298 доТ К.

Таблица 6

Вещество

Вещество

Решение:

Рассмотрим расчет средней теплоемкости аммиака в интервале температур от 298 до 800 К.

Теплоемкость – это отношение количества теплоты, поглощаемой телом при нагревании, к повышению температуры, которым сопровождается нагревание. Для индивидуального вещества различают удельную (одного килограмма) и мольную (одного моля) теплоемкости.

Истинная теплоемкость

, (21)

где δ Q – бесконечно малое количество теплоты, необходимое для повышения температуры тела на бесконечно малую величину dT .

Средняя теплоемкость – это отношение количества теплоты Q к повышению температуры T = T 2 T 1 ,

.

Поскольку теплота не является функцией состояния и зависит от пути процесса, необходимо указывать условия протекания процесса нагревания. В изохорном и изобарном процессах для бесконечно малого изменения δ Q V = dU и δ Q p = dH , поэтому

и
. (22)

Связь между истинными изохорной (С V ) и изобарной (C p ) теплоемкостями вещества и его средними изохорной
и изобарной
теплоемкостями в интервале температур от Т 1 до Т 2 выражается уравнениями (23) и (24):

; (23)

. (24)

Зависимости истинной теплоемкости от температуры выражаются следующими эмпирическими уравнениями:

; (для неорганических веществ) (25)

. (для органических веществ) (26)

Воспользуемся справочником физико-химических величин. Выпишем коэффициенты (a, b, c) уравнения зависимости изобарной теплоемкости аммиака от температуры:

Таблица 7

Вещество

b ·10 3

c / ·10 –5

Запишем уравнение зависимости истинной теплоемкости аммиака от температуры:

.

Подставим это уравнение в формулу (24) и вычислим среднюю теплоемкость аммиака:

= 1/(800-298)
=

0,002 = 43,5 Дж/моль·К.

Задача №7

Для химической реакции, приведенной в табл. 2, постройте графики зависимостей суммы теплоемкостей продуктов реакции от температуры
и суммы теплоемкостей исходных веществ от температуры
. Уравнения зависимости
возьмите из справочника. Рассчитайте изменение теплоемкости в ходе химической реакции (
) при температурах 298 К, 400 К и Т К (табл. 6).

Решение:

Рассчитаем изменение теплоемкости при температурах 298 К, 400 К и 600 К на примере реакции синтеза аммиака:

Выпишем коэффициенты (a, b, c, с /) 1 уравнений зависимости истинной теплоемкости аммиака от температуры для исходных веществ и продуктов реакции с учетом стехиометрических коэффициентов . Вычислим сумму коэффициентов. Например, сумма коэффициентова для исходных веществ равна

= 27,88 + 3·27,28 = 109,72.

Сумма коэффициентов а для продуктов реакции равна

= 2·29,8 = 59,6.

=
=59,6 – 109,72 = –50,12.

Таблица 8

Вещество

b ·10 3

c / ·10 5

с·10 6

исходные

вещества

(
,
,
)

(
,
,
)

,
,

Таким образом, уравнение зависимости

для продуктов реакции имеет следующий вид:

= 59,60 + 50,96·10 –3 Т – 3,34·10 5 /Т 2 .

Для построения графика зависимости суммы теплоемкости продуктов реакции от температуры
рассчитаем сумму теплоемкостей при нескольких температурах:

При Т = 298 К

= 59,60 + 50,96·10 –3 · 298 – 3,34·10 5 /298 2 = 71,03 Дж/К;

При Т = 400 К
= 77,89 Дж/К;

При Т = 600 К
= 89,25 Дж/К.

Уравнение зависимости
для исходных веществ имеет вид:

= 109,72 + 14,05·10 –3 Т + 1,50·10 -5 /Т 2 .

Аналогично рассчитываем
исходных веществ при нескольких температурах:

При Т=298 К

=109,72 + 14,05·10 –3 · 298 + 1,50·10 5 /298 2 =115,60 Дж/К;

При Т = 400 К
= 116,28 Дж/К;

При Т = 600 К
= 118,57 Дж/К.

Далее рассчитываем изменение изобарной теплоемкости
в ходе реакции при нескольких температурах:

= –50,12 + 36,91·10 –3 Т – 4,84·10 5 /Т 2 ,

= –44,57 Дж/К;

= –38,39 Дж/К;

= –29,32 Дж/К.

По рассчитанным значениям строим графики зависимостей суммы теплоемкостей продуктов реакции и суммы теплоемкостей исходных веществ от температуры.

Рис 2. Зависимости суммарных теплоемкостей исходных веществ и продуктов реакции от температуры для реакции синтеза аммиака

В данном интервале температур суммарная теплоемкость исходных веществ выше суммарной теплоемкости продуктов, следовательно,
во всем интервале температур от 298 К до 600 К.

Задача №8

Вычислите тепловой эффект реакции, приведенной в табл. 2, при температуре Т К (табл. 6).

Решение:

Вычислим тепловой эффект реакции синтеза аммиака при температуре 800 К.

Зависимость теплового эффекта
реакции от температуры описываетзакон Кирхгоффа

, (27)

где
- изменение теплоемкости системы в ходе реакции. Проанализируем уравнение:

1) Если
> 0, т.е сумма теплоемкостей продуктов реакции больше суммы теплоемкостей исходных веществ, то> 0,. зависимость
возрастающая, и с повышением температуры тепловой эффект увеличивается.

2) Если
< 0, то< 0, т.е. зависимость убывающая, и с повышением температуры тепловой эффект уменьшается.

3) Если
= 0, то= 0, тепловой эффект не зависит от температуры.

В интегральном виде уравнение Кирхгоффа имеет следующий вид:

. (28)

а) если теплоемкость во время процесса не меняется, т.е. сумма теплоемкостей продуктов реакции равна сумме теплоемкостей исходных веществ (
), то тепловой эффект не зависит от температуры

= const.

б) для приближенного расчета можно пренебречь зависимостью теплоемкостей от температуры и воспользоваться значениями средних теплоемкостей участников реакции (
). В этом случае расчет производится по формуле

в) для точного расчета необходимы данные по зависимости теплоемкости всех участников реакции от температуры
. В этом случае тепловой эффект рассчитывают по формуле

(30)

Выписываем справочные данные (табл.9) и вычисляем изменения соответствующих величин для каждого столбца по аналогии с задачей №7). Полученные данные используем для расчета:

Приближенно:

= –91880 + (–31,88)(800 – 298) = –107883,8 Дж = – 107, 88 кДж.

= –91880 + (–50,12)(800 – 298) + 1/2·36,91·10 -3 (800 2 – 298 2) +

– (–4,84·10 5)(1/800 – 1/298) = – 107815 Дж = – 107,82 кДж.

Для реакции синтеза аммиака изменение теплоемкости в ходе реакции
< 0 (см. задачу №7). Следовательно< 0, с повышением температуры тепловой эффект уменьшается.

Таблица 9

Вещество

Сумма для продуктов реакции

Сумма для исходных веществ

Изменение в ходе реакции

,


=


=

=

, Дж/(моль·К)


=


=

=


=


=

=


=


=

=


=


= 1,5

=


= 0


= 0

= 0

В результате изучения данной темы вы узнаете:

  • Чем обычные уравнения химических реакций отличаются от их термохимических уравнений.
  • От каких факторов зависит скорость химических реакций.
  • Чем истинное (химическое) равновесие отличается от кажущегося равновесия.
  • В какую сторону смещается равновесие при изменении внешних условий.
  • В чем состоит механизм гомогенного и гетерогенного катализа.
  • Что такое ингибиторы и промоторы.

В результате изучения данной темы вы научитесь:

  • Рассчитывать тепловые эффекты химических реакций с использованием величин энтальпий образования веществ.
  • Проводить расчеты с использованием математического выражения принципа Вант-Гоффа.
  • Определять направление смещения химического равновесия при изменении температуры и давления.

Учебные вопросы:

6.1. Энергетика химических процессов

6.1.1. Внутренняя энергия и энтальпия

В любом процессе соблюдается закон сохранения энергии:

Q = Δ U + A.

Это равенство означает, что если к системе подводится теплота Q, то она расходуется на изменение внутренней энергии Δ U и на совершение работы А.

Внутренняя энергия системы – это общий ее запас, включающий энергию поступательного и вращательного движения молекул, энергию движения электронов в атомах, энергию взаимодействия ядер с электронами, ядер с ядрами и т.д., т.е. все виды энергии, кроме кинетической и потенциальной энергии системы в целом.

Работа, совершаемая системой при переходе из состояния 1, характеризуемого объемом V 1 , в состояние 2 (объем V 2) при постоянном давлении (работа расширения), равна:

А = р(V 2 - V 1).

При постоянном давлении (р=const) с учетом выражения для работы расширения закон сохранения энергии запишется следующим образом:

Q = (U 2 + pV 2) – (U 1 + pV 1).

Сумма внутренней энергии системы и произведения ее объема на давление называется энтальпией Н:

Поскольку точное значение внутренней энергии системы неизвестно, абсолютные величины энтальпий также не могут быть получены. Научное значение имеют и практическое применение находят изменения энтальпий Δ Н.

Внутренняя энергия U и энтальпия Н представляют собой функции состояния системы. Функциями состояния являются такие характеристики системы, изменения которых определяются лишь конечным и начальным состоянием системы, т.е. не зависят от пути процесса.

6.1.2. Экзо- и эндотермические процессы

Протекание химических реакций сопровождается поглощением или выделением теплоты. Экзотермической называют реакцию, протекающую с выделением теплоты в окружающую среду, а эндотермической – с поглощением теплоты из окружающей среды.

Многие процессы в промышленности и в лабораторной практике протекают при постоянных давлении и температуре (Т=const, р=const). Энергетической характеристикой этих процессов является изменение энтальпии:

Q P = -Δ Н.

Для процессов, протекающих при постоянных объеме и температуре (Т=const, V=const) Q V =-Δ U.

Для экзотермических реакций Δ Н < 0, а в случае протекания эндотермической реакции Δ Н > 0. Например,

N 2(г) + ЅO 2(г) = N 2 O (г) ; ΔН 298 = +82кДж,

CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г) ; ΔН 298 = -802кДж.

Химические уравнения, в которых дополнительно указывается тепловой эффект реакции (величина DН процесса), а также агрегатное состояние веществ и температура, называются термохимическими уравнениями.

В термохимических уравнениях отмечают фазовое состояние и аллотропные модификации реагентов и образующихся веществ: г – газообразное, ж – жидкое, к – кристаллическое; S (ромб) , S (монокл) , С (графит) , С (алмаз) и т.д.

6.1.3. Термохимия; закон Гесса

Энергетические явления, сопровождающие физические и химические процессы изучает термохимия . Основным законом термохимии является закон, сформулированный русским ученым Г.И. Гессом в 1840 году.

Закон Гесса: изменение энтальпии процесса зависит от вида и состояния исходных веществ и продуктов реакции, но не зависит от пути процесса.

При рассмотрении термохимических эффектов часто вместо понятия «изменение энтальпии процесса» используют выражение «энтальпия процесса», подразумевая под этим понятием величину Δ Н. Неправильно использовать при формулировке закона Гесса понятие «тепловой эффект процесса», поскольку величина Q в общем случае не является функцией состояния. Как выше было указано, только при постоянном давлении Q P =-Δ Н (при постоянном объеме Q V =-Δ U).

Так, образование PCl 5 можно рассматривать как результат взаимодействия простых веществ:

P (к, белый) + 5/2Cl 2(г) = PCl 5(к) ; Δ Н 1 ,

или как результат процесса, протекающего в несколько стадий:

P (к, белый) + 3/2Cl 2(г) = PCl 3(г) ; Δ Н 2 ,

PCl 3(г) + Cl 2(г) = PCl 5(к) ; Δ Н 3 ,

или суммарно:

P (к, белый) + 5/2Cl 2(г) = PCl 5(к) ; Δ Н 1 = Δ Н 2 + Δ Н 3 .

6.1.4. Энтальпии образования веществ

Энтальпией образования называется энтальпия процесса образования вещества в данном агрегатном состоянии из простых веществ, находящихся в устойчивых модификациях. Энтальпией образования сульфата натрия, например, является энтальпия реакции:

2Na (к) + S (ромб) +2O 2(г) = Na 2 SO 4(к) .

Энтальпия образования простых веществ равна нулю.

Поскольку тепловой эффект реакции зависит от состояния веществ, температуры и давления, то при проведении термохимических расчетов условились использовать стандартные энтальпии образования – энтальпии образования веществ, находящихся при данной температуре в стандартном состоянии . В качестве стандартного состояния для веществ, находящихся в конденсированном состоянии принято реальное состояние вещества при данной температуре и давлении 101,325 кПа (1 атм). В справочниках обычно приводятся стандартные энтальпии образования веществ при температуре 25 o С (298К), отнесенные к 1 моль вещества (Δ Н f o 298). Стандартные энтальпии образования некоторых веществ при Т=298К приведены в табл. 6.1.

Таблица 6.1.

Стандартные энтальпии образования (Δ Н f o 298) некоторых веществ

Вещество

Δ Н f o 298 , кДж/моль

Вещество

Δ Н f o 298 , кДж/моль

Стандартные энтальпии образования большинства сложных веществ являются отрицательными величинами. Для небольшого числа неустойчивых веществ Δ Н f o 298 > 0. К числу таких веществ, в частности, относятся оксид азота(II) и оксид азота(IV), табл.6.1.

6.1.5. Расчет тепловых эффектов химических реакций

Для расчета энтальпий процессов используется следствие из закона Гесса: энтальпия реакции равна сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов .

Рассчитаем энтальпию разложения карбоната кальция. Процесс описывается следующим уравнением:

СаСО 3(к) = CaO (к) + CO 2(г) .

Энтальпия этой реакции будет равна сумме энтальпий образования оксида кальция и углекислого газа за вычетом энтальпии образования карбоната кальция:

Δ Н o 298 = Δ Н f o 298 (СаО (к)) + Δ Н f o 298 (СО 2(г)) - Δ Н f o 298 (СаСО 3(к)).

Используя данные табл.6.1. получаем:

Δ Н o 298 = - 635,1 -393,5 + 1206,8 = + 178,2 кДж.

Из полученных данных следует, что рассматриваемая реакция является эндотермической, т.е. протекает с поглощением тепла.

CaO (к) + CO 2(к) = СаСО 3(к)

Сопровождается выделением теплоты. Ее энтальпия окажется равной

Δ Н o 298 = -1206,8 +635,1 + 393,5 = -178,2 кДж.

6.2. Скорость химических реакций

6.2.1. Понятие скорости реакции

Раздел химии, в котором рассматриваются скорость и механизмы химических реакций называется химической кинетикой . Одним из ключевых понятий в химической кинетике является скорость химической реакции.

Скорость химической реакции определяется изменением концентрации реагирующих веществ в единицу времени при неизменном объеме системы.

Рассмотрим следующий процесс:

Пусть в какой–то момент времени t 1 концентрация вещества А равна величине с 1 , а в момент t 2 – величине с 2 . За промежуток времени от t 1 до t 2 , изменение концентрации составит Δ с = с 2 – с 1 . Средняя скорость реакции равна:

Знак минус ставится потому, что по мере протекания реакции (Δ t> 0) концентрация вещества уменьшается (Δ с< 0), в то время, как скорость реакции является положительной величиной.

Скорость химической реакции зависит от природы реагирующих веществ и от условий протекания реакций: концентрации, температуры, присутствия катализатора, давления (для газовых реакций) и некоторых других факторов. В частности, при увеличении площади соприкосновения веществ скорость реакции увеличивается. Скорость реакции также возрастает при увеличении скорости перемешивания реагирующих веществ.

Численное значение скорости реакции зависит также от того, по какому компоненту рассчитывается скорость реакции. Так, например, скорость процесса

Н 2 + I 2 = 2HI,

рассчитанная по изменению концентрации HI в два раза больше скорости реакции, вычисленной по изменению концентрации реагентов Н 2 или I 2 .

6.2.2. Зависимость скорости реакции от концентрации; порядок и молекулярность реакции

Основной закон химической кинетикизакон действующих масс –устанавливает зависимость скорости реакции от концентрации реагирующих веществ.

Скорость реакции пропорциональна произведению концентраций реагирующих веществ . Для реакции, записанной в общем виде как

аA + bB = cC + dD,

зависимость скорости реакции от концентрации имеет вид:

v = k [A] α [B] β .

В данном кинетическом уравнении k – коэффициент пропорциональности, называемый константой скорости ; [A] и [B] – концентрации веществ А и В. Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций. Коэффициенты α и β находят из экспериментальных данных.

Сумма показателей степеней в кинетических уравнениях называется общим порядком реакции. Различают также частный порядок реакции по одному из компонентов. Например, для реакции

Н 2 + С1 2 = 2 НС1

Кинетическое уравнение выглядит так:

v = k 1/2 ,

т.е. общий порядок равен 1,5 а порядки реакции по компонентам Н 2 и С1 2 равны соответственно 1 и 0,5.

Молекулярность реакции определяется числом частиц, одновременным соударением которых осуществляется элементарный акт химического взаимодействия. Элементарный акт (элементарная стадия) – единичный акт взаимодействия или превращения частиц (молекул, ионов, радикалов) в другие частицы. Для элементарных реакций молекулярность и порядок реакции совпадают. Если процесс многостадиен и поэтому запись уравнения реакции не раскрывает механизма процесса, порядок реакции не совпадает с ее молекулярностью.

Химические реакции подразделяют на простые (одностадийные) и сложные, протекающие в несколько стадий.

Мономолекулярная реакция – это реакция, в которой элементарный акт представляет собой химическое превращение одной молекулы. Например:

СН 3 СНО (г) = СН 4(г) + СО (г) .

Бимолекулярная реакция – реакция, элементарный акт в которой осуществляется при столкновении двух частиц. Например:

H 2(г) + I 2(г) = 2 HI (г) .

Тримолекулярная реакция простая реакция, элементарный акт которой осуществляется при одновременном столкновении трех молекул. Например:

2NO (г) + O 2(г) = 2 NO 2(г) .

Установлено, что одновременное столкновение более чем трех молекул, приводящее к образованию продуктов реакции, практически невозможно.

Закон действующих масс не распространяется на реакции, протекающие с участием твердых веществ, поскольку их концентрации постоянны и они реагируют лишь на поверхности. Скорость таких реакций зависит от величины поверхности соприкосновения между реагирующими веществами.

6.2.3. Зависимость скорости реакции от температуры

Скорость химических реакций при повышении температуры возрастает. Это увеличение вызвано возрастанием кинетической энергии молекул. В 1884 году голландский химик Вант-Гофф сформулировал правило: при повышении температуры на каждые 10 градусов скорость химических реакций увеличивается в 2-4 раза.

Правило Вант-Гоффа записывается в виде:

,

где V t 1 и V t 2 - скорости реакции при температурах t 1 и t 2 ; γ - температурный коэффициент скорости, равный 2 - 4.

Правило Вант-Гоффа используется для приближенной оценки влияния температуры на скорость реакции. Более точное уравнение, описывающее зависимость константы скорости реакции от температуры, предложил в 1889 году шведский ученый С. Аррениус:

.

В уравнении Аррениуса А – константа, Е – энергия активации (Дж/моль); Т – температура, К.

Согласно Аррениусу не все столкновения молекул приводят к химическим превращениям. Лишь молекулы, обладающие некоторой избыточной энергией способны прореагировать. Эта избыточная энергия, которой должны обладать сталкивающиеся частицы, чтобы между ними произошла реакция, называется энергией активации .

6.3. Понятие о катализе и катализаторах

Катализатором называется вещество, изменяющее скорость химической реакции, но остающееся химически неизменным по окончании реакции.

Одни катализаторы ускоряют реакцию, другие, называемые ингибиторами , замедляют ее протекание. Например, добавление в качестве катализатора небольшого количества МnO 2 к пероксиду водорода Н2О2 вызывает бурное разложение:

2 Н 2 O 2 –(MnO 2) 2 Н 2 O + O 2 .

В присутствии небольших количеств серной кислоты наблюдается уменьшение скорости разложения Н 2 О 2 . В этой реакции серная кислота выступает в роли ингибитора.

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества или образует самостоятельную фазу, различают гомогенный и гетерогенный катализ .

Гомогенный катализ

В случае гомогенного катализа реагирующие вещества и катализатор находятся в одной фазе, например, газообразной. Механизм действия катализатора основан на том, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений.

Рассмотрим механизм действия катализатора. В отсутствие катализатора реакция

Протекает очень медленно. Катализатор образует с исходными веществами (например, с веществом В) реакционноспособный промежуточный продукт:

который энергично реагирует с другим исходным веществом с образованием конечного продукта реакции:

ВК + А = АВ + К.

Гомогенный катализ имеет место, например, в процессе окисления оксида серы(IV) в оксид серы(VI), который происходит в присутствии оксидов азота.

Гомогенная реакция

2 SO 2 + O 2 = 2 SO 3

в отсутствии катализатора идет очень медленно. Но при введении катализатора (NO) происходит образование промежуточного соединения (NO2):

O 2 + 2 NO = 2 NO 2 ,

которое легко окисляет SO 2:

NO 2 + SO 2 = SO 3 + NO.

Энергия активации последнего процесса очень мала, поэтому реакция протекает с высокой скоростью. Таким образом, действие катализаторов сводится к уменьшению энергии активации реакции.

Гетерогенный катализ

При гетерогенном катализе катализатор и реагирующие вещества находятся в различных фазах. Катализатор обычно находится в твердом, а реагирующие вещества в жидком или газообразном состояниях. При гетерогенном катализе ускорение процесса обычно связано с каталитическим действием поверхности катализатора.

Катализаторы отличаются избирательностью (селективностью) действия. Так, например, в присутствии катализатора оксида алюминия Al 2 O 3 при 300 o С из этилового спирта получают воду и этилен:

С 2 Н 5 OН –(Al 2 O 3) С 2 Н 4 + Н 2 O.

При той же температуре, но в присутствии в качестве катализатора меди Cu, происходит дегидрирование этилового спирта:

С 2 Н 5 OН –(Cu) СН 3 СНО + Н 2 .

Небольшие количества некоторых веществ снижают или даже полностью уничтожают активность катализаторов (отравление катализаторов). Такие вещества называются каталитическими ядами . Например, кислород вызывает обратимое отравление железного катализатора при синтезе NH 3 . Восстановить активность катализатора можно путем пропускания очищенной от кислорода свежей смеси азота и водорода. Сера вызывает необратимое отравление катализатора при синтезе NH 3 . Его активность пропусканием свежей смеси N 2 +Н 2 восстановить уже не удается.

Вещества, усиливающие действие катализаторов реакции, называются промоторами , или активаторами (промотирование платиновых катализаторов, например, производится путем добавок железа или алюминия).

Более сложен механизм гетерогенного катализа. Для его объяснения используется адсорбционная теория катализа. Поверхность катализатора неоднородна, поэтому на ней имеются так называемые активные центры. На активных центрах происходит адсорбция реагирующих веществ. Последний процесс вызывает сближение реагирующих молекул и повышение их химической активности, так как у адсорбированных молекул ослабляется связь между атомами, увеличивается расстояние между атомами.

С другой стороны, считают, что ускоряющее действие катализатора в гетерогенном катализе связано с тем, что реагирующие вещества образуют промежуточные соединения (как и в случае гомогенного катализа), что приводит к снижению энергии активации.

6.4. Химическое равновесие

Необратимые и обратимые реакции

Реакции, протекающие только в одном направлении и завершающиеся полным превращением исходных веществ в конечные вещества, называются необратимыми.

Необратимыми, т.е. протекающими до конца, являются реакции в которых

Химические реакции, которые могут идти в противоположных направлениях, называются обратимыми. Типичными обратимыми реакциями является реакции синтеза аммиака и окисления оксида серы(IV) в оксид серы(VI):

N 2 + 3 H 2 2 NH 3 ,

2 SO 2 + O 2 2 SO 3 .

При написании уравнений обратимых реакций вместо знака равенства ставят две стрелки, направленные в противоположные стороны.

В обратимых реакциях скорость прямой реакции в начальный момент времени имеет максимальное значение, которое убывает по мере уменьшения концентрации исходных реагентов. Напротив, обратная реакция вначале имеет минимальную скорость, возрастающую по мере увеличения концентрации продуктов. В результате, наступает момент, когда скорости прямой и обратной реакции становятся равны между собой и в системе устанавливается химическое равновесие.

Химическое равновесие

Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием.

Химическое равновесие называется также истинным равновесием. Помимо равенства скоростей прямой и обратной реакций, истинное (химическое) равновесие характеризуется следующими признаками:

    неизменность состояния системы вызвана протеканием прямой и обратной реакции, то есть равновесное состояние является динамическим;

    состояние системы остается неизменным во времени, если на систему не оказывается внешнее воздействие;

    любое внешнее воздействие вызывает смещение равновесия системы; однако, если внешнее воздействие снимается, то система снова возвращается в исходное состояние;

  • состояние системы одинаково независимо от того, с какой стороны система подходит к равновесию – со стороны исходных веществ или со стороны продуктов реакции.

От истинного следует отличать кажущееся равновесие . Так, например, смесь кислорода и водорода в закрытом сосуде при комнатной температуре может сохраняться сколь угодно долго. Однако инициирование реакции (электрический разряд, ультрафиолетовое облучение, повышение температуры) вызывает необратимое протекание реакции образования воды.

6.5. Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шатель е (Франция, 1884 год): если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то равновесие в системе сместится в сторону ослабления этого воздействия.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции синтеза аммиака:

N 2 + 3 H 2 2 NH 3 ; Δ H = -91,8 кДж.

Влияние концентрации на химическое равновесие.

В соответствии с принципом Ле Шателье увеличение концентрации исходных веществ смещает равновесие в сторону образования продуктов реакции. Увеличение же концентрации продуктов реакции смещает равновесие в сторону образования исходных веществ.

В рассмотренном выше процессе синтеза аммиака введение в равновесную систему дополнительных количеств N 2 или H 2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NH3. Увеличение концентрации аммиака смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую так и обратную реакции, поэтому введение катализатора не влияет на химическое равновесие.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше величина Δ H реакции, тем значительнее влияние температуры.

В рассматриваемой реакции синтеза аммиака повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Изменение давления оказывает влияние на химическое равновесие с участием газообразных веществ. Согласно принципу Ле Шателье, повышение давления смещает равновесие в сторону реакции, протекающей с уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону. Реакции синтеза аммиака протекает с уменьшением объема системы (в левой части уравнения находится четыре объема, в правой – два). Поэтому повышение давления смещает равновесие в сторону образования аммиака. Уменьшение давления сместит равновесие в обратную сторону. Если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны (реакция протекает без изменения объема газообразных веществ), то давление не влияет на положение равновесия в этой системе.

Все методы расчета тепловых эффектов основаны на уравнении Кирхгоффа в интегральной форме.

Чаще всего, в качестве первой температуры используют стандартную 298,15K.

Все методы расчета тепловых эффектов сводятся к способам взятия интеграла правой части уравнения.

Методы взятия интеграла:

I. По средним теплоемкостям. Данный метод является наиболее простым и наименее точным. В этом случае выражение под знаком интеграла заменяется на изменение средней теплоемкости, которая не зависит от температуры в выбранном диапазоне.

Средние теплоемкости табулированы и измерены для большинства реакций. Их легко рассчитать по справочным данным.

II. По Истинным теплоемкостям. (С помощью температурных рядов)

В этом методе подынтегральное выражение теплоемкости записывается как температурный ряд:

III. По высокотемпературным составляющим энтальпии. Данный метод получил большое распространение с развитием ракетной техники при расчете тепловых эффектов химических реакций при высоких температурах. Он основан на определении изобарной теплоемкости:

Высокотемпературная составляющая энтальпии. Она показывает, насколько изменится энтальпия индивидуального вещества при нагревании его на определенное количество градусов.

Для химической реакции записываем:

Таким образом:

Лекция №3.

План лекции:

1. II закон термодинамики, определение, математическая запись.

2. Анализ II закона термодинамики

3. Расчет изменения энтропии в некоторых процессах

Теплотой реакции (тепловым эффектом реакции) называется количество выделенной или поглощённой теплоты Q. Если в ходе реакции теплота выделяется, такая реакция называется эк­зотермической, если теплота поглощается, реакция называется эндотермической.

Теплота реакции определяется, исходя из первого закона (начала) термодинамики, матема­тическим выражением которого в его наиболее простой форме для химических реакций является урав­нение:

Q = ΔU + рΔV (2.1)

где Q - теплота реакции, ΔU - изменение внутренней энергии, р -давление, ΔV - изменение объёма.

Термохимический расчёт заключается в определении теплового эффекта реакции. В соот­ветствии с уравнением (2.1) численное значение теплоты реакции зависит от способа её проведения. В изохорном процессе, проводимом при V=const, теплота реакции Q V = ΔU, в изобарном процессе при p=const тепловой эффект Q P = ΔH. Таким образом, термохимический расчёт заключаетсяв определении величины изменения или внутренней энергии, или энтальпии в ходе реакции. Поскольку подавляющее большинство реакций протекает в изобарных условиях (например, это все реакции в открытых сосу­дах. протекающие при атмосферном давлении), при приведении термохимических расчётов практическивсегда производится расчёт ΔН. Если ΔН<0, то реакция экзотермическая, если же ΔН>0, то ре­акция эндотермическая.

Термохимические расчёты производятся, используя или закон Гесса, согласно которому тепло­вой эффект процесса не зависит от его пути, а определяется лишь природой и состоянием исход­ных веществ и продуктов процесса, или, чаще всего, следствие из закона Гесса: тепловой эффект реакции равен сумме теплот (энтальпий) образования продуктов за вычетом суммы теплот (эн­тальпий) образования реагентов.

В расчётах по закону Гесса используются уравнения вспомогательных реакций, тепловые эффек­ты которых известны. Суть операций при расчётах по закону Гесса заключается в том, что над уравне­ниями вспомогательных реакций производят такие алгебраические действия, которые приводят к урав­нению реакции с неизвестным тепловым эффектом.

Пример 2.1. Определение теплоты реакции: 2СО + O 2 = 2СO 2 ΔН - ?

В качестве вспомогательных используем реакции: 1)С + О 2 = С0 2 ; ΔН 1 = -393,51 кДж и 2)2С + О 2 = 2СО; ΔН 2 = -220,1 кДж, где ΔН / и ΔН 2 - тепловые эффекты вспомогательных реакций. Используя уравнения этих реакций, можно получить уравнение заданной реакции, если вспомогатель­ное уравнение 1) умножить на два и из полученного результата вычесть уравнение 2). Поэтому неиз­вестная теплота заданной реакции равна:


ΔН = 2 ΔH 1 - ΔН 2 = 2(-393,51) - (-220,1) = -566,92 кДж.

Если в термохимическом расчёте используется следствие из закона Гесса, то для реакции, выра­женной уравнением aA+bB=cC+dD, пользуются соотношением:

ΔН =(сΔНобр,с + dΔHoбp D) - (аΔНобр A + bΔН обр,в) (2.2)

где ΔН - теплота реакции; ΔН o бр - теплоты (энтальпии) образования, соответственно, продуктов реак­ции С и D и реагентов А и В; с, d, a, b - стехиометрические коэффициенты.

Теплотой (энтальпией) образования соединения называется тепловой эффект реакции, в ходе которой образуется 1 моль этого соединения из простых веществ, находящихся в термодина­мически устойчивых фазах и модификациях 1 *. Например, теплота образования воды в парообразном состоянии равна половине теплоты реакции, выражаемой уравнением: 2Н 2 (г) + О 2 (г) = 2Н 2 О(г). Раз­мерность теплоты образования - кДж/моль.

В термохимических расчётах теплоты реакций, как правило, определяются для стандартных ус­ловий, для которых формула (2.2) приобретает вид:

ΔН°298 = (сΔН° 298,обр,С + dΔH° 298, o 6 p , D) - (аΔН° 298,обр A + bΔН° 298,обр,в) (2.3)

где ΔН° 298 - стандартная теплота реакции в кДж (стандартность величины указывается верхним индек­сом "0") при температуре 298К, а ΔН° 298,обР - стандартные теплоты (энтальпии) образования также при температуре 298К.Значения ΔН° 298 .обР .определены для всех соединений и являются табличны­ми данными. 2 * - см. таблицу приложения.

Пример 2.2. Расчёт стандартной теплоты р еакции, выраженной уравнением:

4NH 3 (r) + 5O 2 (г) = 4NO(г) + 6Н 2 О(г).

Согласно следствию из закона Гесса записываем 3* :

ΔН 0 298 = (4 ΔН 0 298. o б p . No + 6 ΔH 0 298. одр.Н20) - 4 ΔH 0 298 обр. NH з. Подставив табличные значения стандартных теплот образования соединений, представленных в уравнении, получим: ΔН°298 = (4(90,37) + 6(-241,84)) - 4(-46,19) = - 904,8 кДж.

Отрицательный знак теплоты реакции указывает на экзотермичность процесса.

В термохимии тепловые эффекты принято указывать в уравнениях реакций. Такиеуравнения с обозначенным тепловым эффектом называются термохимическими. Например, термохимическое уравнение рассмотренной в примере 2.2 реакции записывается:

4NH 3 (г) + 50 2 (г) = 4NО(г) + 6Н 2 0(г); ΔН° 29 8 = - 904,8 кДж.

Если условия отличаются от стандартных, в практических термохимических расчётах допускает­ся использование приближения:ΔН ≈ ΔН° 298 (2.4) Выражение(2.4) отражает слабую зависимость величины теплоты реакции от условий её протекания.

здесь и далее индексы i относятся к исходным веществам или реагентам, а индексыj – к конечным веществам или продуктам реакции; и – стехиометрические коэффициенты в уравнении реакции для исходных веществ и продуктов реакции, соответственно.

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при стандартных условиях.

Решение: Для расчетов воспользуемся справочными данными по стандартным теплотам образования, участвующих в реакции веществ (см. табл. 44 на стр.72 справочника ).

Тепловой эффект реакции синтеза метанола в стандартных условиях по первому следствию из закона Гесса (уравнение 1.15) равен:

При расчете тепловых эффектов химических реакции нужно учитывать, что тепловой эффект зависит от агрегатного состояния реагентов и от вида записи химического уравнения реакции:

По второму следствию из закона Гесса тепловой эффект можно рассчитать, используя теплоты сгорания Δ c H , как разность сумм теплот сгорания исходных веществ и продуктов реакции (с учетом стехиометрических коэффициентов):

где Δ r C p – характеризует изменение изобарной теплоемкости системы в результате протекания химической реакции и называется температурным коэффициентом теплового эффекта реакции.

Из дифференциального уравнения Кирхгоффа следует, что зависимость теплового эффекта от температуры определяется знаком Δ r C p , т.е. зависит от того, что больше, суммарная теплоемкость исходных веществ или суммарная теплоемкость продуктов реакции. Проанализируем дифференциальное уравнение Кирхгофа.



1. Если температурный коэффициент Δ r C p > 0, то производная > 0 и функция возрастающая. Следовательно, тепловой эффект реакции с ростом температуры увеличивается.

2. Если температурный коэффициент Δ r C p < 0, то производная < 0 и функция убывающая. Следовательно, тепловой эффект реакции с ростом температуры уменьшается.

3. Если температурный коэффициент Δ r C p = 0, то производная = 0 и . Следовательно, тепловой эффект реакции не зависит от температуры. Этот случай на практике не встречается.

Дифференциальные уравнения удобны для анализа, но неудобны для расчетов. Чтобы получить уравнение для расчета теплового эффекта химической реакции, проинтегрируем дифференциальное уравнение Кирхгофа, разделив переменные:

Теплоемкости веществ зависят от температуры, следовательно, и . Однако, в области обычно используемых в химико-технологических процессах температурах эта зависимость не значительна. Для практических целей пользуются средними теплоемкостями веществ в интервале температур от 298 К до заданной температуры , которые приводятся в справочниках. Температурный коэффициент теплового эффекта, рассчитанный с использованием средних теплоемкостей:

Пример: Рассчитаем тепловой эффект реакции синтеза метанола при температуре 1000 К и стандартном давлении.

Решение: Для расчетов воспользуемся справочными данными по средним теплоемкостям участвующих в реакции веществ в интервале температур от 298 К до 1000 К (см. табл. 40 на стр.56 справочника ):

Изменение средней теплоемкости системы в результате протекания химической реакции:

Второе начало термодинамики

Одной из важнейших задач химической термодинамики яв­ляется выяснение принципиальной возможности (или невоз­можности) самопроизвольного протекания химической реакции в рассматриваемом направлении. В тех случаях, когда стано­вится ясно, что данное химическое взаимодействие происходить может, необходимо определить степень превращения исходных веществ и выход продуктов реакции, то есть полноту протекания реакции

Направление протекания самопроизвольного процесса можно определить на основе второго закона или начала термодинамики, сформулированного, например, в виде постулата Клаузиуса:

Теплота сама собой не может переходить от холодного тела к горячему, т. е. невозможен такой процесс, единственным резуль­татом которого был бы переход теплоты от тела с более низкой температурой к телу с более высокой температурой.

Предложено множество формулировок второго начала термо­динамики. Формулировка Томсона - Планка:

Невозможен вечный двигатель второго рода, т. е. невозмож­на такая периодически действующая машина, которая бы позволяла получать работу только за счет охлаждения источника тепла.

Математическая формулировка второго начала термодинамики возникла при анализе работы тепловых машин в трудах Н. Карно и Р. Клаузиуса.

Клаузиусом была введена функция состояния S , названная энтропией, изменение которой равно теплоте обратимого процесса, отнесенной к температуре

Для любого процесса

(1.22)

Полученное выражение представляет собой математическое выражение второго начала термодинамики.