Из истории паровой турбины. Чудо инженерной мысли или история изобретения турбин

Турбина Лаваля

Впоследствии, вспоминая о клостерском периоде своей жизни и преследовавших его в это время идеях, Лаваль писал в одной из своих записных книжек:

«Я был всецело проникнут истиной: большие скорости - вот истинный дар богов! Я уже в 1876 году мечтал об успешном применении пара, направленного непосредственно на колесо для получения механической работы. Это было смелое предприятие. В те времена употреблялись лишь малые скорости. Скорости, позднее достигнутые в сепараторе, в то время казались невероятными, а в современных учебниках писалось о паре: жаль, что плотность пара так мала, что не допускает даже мысли о применении его на колесе для создания энергии… И все-таки мне удалось осуществить мои смелые мечты».

В этом признании, свидетельствующем, что Лаваль отдавал себе полный отчет в том, какое значение может иметь смутная идея, родившаяся в его сознании в Клостере во время неудачного опыта с пескоструйным аппаратом, нет ничего преувеличенного.

Следует напомнить, что в то время, когда идея паровой турбины впервые возникла у Лаваля, не было еще произведено достаточной подготовительной работы. Правда, паровая турбина, как мы уже видели, являлась древнейшим тепловым двигателем, существовавшим еще задолго до появления паровой машины, но, несмотря на массу проектов, возникавших в течение многих лет, никому еще не удавалось эту паровую турбину превратить в практически применяемый двигатель.

Только большая научная подготовка, настойчивость и неоспоримый изобретательский талант могли помочь Лавалю поставить на службу человечеству неслыханные дотоле большие скорости, даваемые паровой турбиной.

Первые работы Лаваля в области паровой турбины имели своей непосредственной целью создать простой и дешевый двигатель для сепаратора.

Для приведения во вращательное движение оси сепаратора с большим числом оборотов требовались специальные механизмы или же специальные двигатели. В ручном сепараторе Лаваля применялась зубчатая и червячная передача от рукоятки, делающей 40 оборотов в минуту, к шпинделю, делавшему 7 тысяч оборотов за то же время. В механических сепараторах, работавших от конного привода или от паровой машины, эта передача делалась ременной к промежуточному шкиву на горизонтальной оси, а от него уже шла канатная передача к шкиву на шпинделе.

Лаваль очень хорошо помнил, какую мускульную силу нужно было затрачивать ему и Зундбергу для приведения в действие сепаратора в те времена, когда на Регеринсгатане толпились любопытные, которым Лаваль должен был, обливаясь потом, демонстрировать свою машину.

Чтобы избавиться от сложной и неудобной передачи, требовавшей дополнительной механической энергии, Лаваль с самого начала пришел к мысли вращать шпиндель сепаратора с помощью реактивного турбинного колеса, являющегося не чем иным, как «эолипилом» Герона Александрийского.

Передачи Лаваля для увеличения числа оборотов сепаратора

В самом начале 1883 года Лаваль построил такой первый турбинный сепаратор. Английский патент, взятый им 2 апреля 1883 года, означенный № 1622, на турбину, «работающую паром или водой», и был первым патентом Лаваля в той области техники, которая принесла ему мировую известность.

Эта турбина представляла собой С-образное колесо, состоящее из двух изогнутых труб. Колесо было насажено непосредственно на оси сепаратора. Свежий пар, давлением не менее четырех атмосфер, выходил из этих изогнутых трубок и реактивным действием выходящей струи приводил в движение колесо.

Лаваль не придавал слишком большого значения этой своей работе и, демонстрируя турбинный сепаратор друзьям, заметил:

Достоинство этой турбины - ее простота… Я думаю, что она поможет распространению наших машин, так как установка парового котла для нее легко может быть осуществлена даже в небольшом хозяйстве.

Вслед затем на рынок было выпущено несколько подобных турбинных сепараторов, однако они не получили распространения. Вопреки предположениям изобретателя, сепараторы эти оказались совсем неэкономичными: турбина расходовала слишком много пара. В то же время изготовление турбинных колес при тогдашнем состоянии машиностроительной техники обходилось очень дорого, и они были далеки от совершенства.

Турбинный сепаратор Лаваля и турбинное колесо

Впрочем, впоследствии подобные турбинные сепараторы в несколько усовершенствованном виде вновь начали строиться и получили распространение, так как удалось значительно понизить расход пара их турбинами.

Но кроме сепаратора, во всяком случае, эта первая турбина Лаваля нигде не применялась.

Раз занявшись турбиной, Лаваль все-таки хотел довести конструкцию турбинного сепаратора до совершенства, обеспечивающего таким сепараторам практическое применение. Неудача с первой турбиной к тому же затрагивала его самолюбие, и ему хотелось оправдать веру друзей в его конструкторский талант.

Продолжая разрабатывать конструкцию, он в 1886 году построил второй турбинный сепаратор с тем же реактивным колесом. Колесо состояло на этот раз из прямых каналов, снабженных конусообразными выходными насадками, с подводом пара через полую ось. Но и эта турбина, в принципе ничем не отличавшаяся от первой, также не помогла распространению турбинных сепараторов.

Однако в дальнейшем эти конические насадки сыграли решительную роль в истории создания турбины.

Дело в том, что эти насадки, как это заметил Лаваль при первых же опытах с ними, представляли собой замечательный аппарат для более совершенного использования кинетической энергии пара. Пар, под влиянием разности давлений в начале и конце этих насадок, проходя через них, получал ускорение вследствие перехода потенциальной энергии пара в его кинетическую энергию, живую «ветровую» силу.

Изобретательному уму Лаваля, сделав это наблюдение, легко было заключить, что если этот пар с полученной скоростью его истечения направить этим же самым аппаратом на лопатки рабочего колеса, то он произведет давление на лопатки, оказывающие ему сопротивление, и, отдавая им часть своей энергии, заставит колесо вращаться.

Таким образом, напав на мысль - это было в 1886 году, десять лет спустя после случая в Клостере - применить коническую насадку как аппарат для преобразования потенциальной энергии пара и поместить эту насадку как направляющий аппарат перед лопатками рабочего колеса, - Лаваль перешел от опытов с чисто реактивной турбиной к турбине чисто активной. Иными словами, мысль изобретателя от эолипила обратилась к другой готовой технической форме, к знаменитой машине Джиованни Бранка, той самой машине, о которой принято было думать, что струей пара никогда нельзя получить сколько-нибудь значительной силовой мощности.

Восставая против этого общепринятого мнения, Лаваль с гениальной простотой решил задачу, несмотря на чрезвычайные трудности, которые тотчас же встали перед ним, как только он взялся за осуществление идеи.

Теперь уже речь шла не о специальном двигателе для сепаратора, - Лаваль это отлично понимал. Перед ним стояла задача постройки того быстроходного двигателя, которого требовала современная промышленность.

Лаваль ни на минуту не сомневался в практическом успехе своего будущего создания. О закулисной борьбе против всякого нового двигателя, которую должен будет повести капитал, вложенный в паровые машины и в их производство, о сопротивлении предприятий, уже освоивших паровые машины и не расположенных тратить время и средства на освоение нового двигателя, он, конечно, не думал.

Все дело заключалось, как ему казалось, только в технических трудностях, а на преодоление их у него было достаточно теперь не только энергии, опыта, знаний, но и материальных средств в виде акций процветающего «Сепаратора», которым командовал изумительный Бернстрем.

Материальные условия для развития деятельности Лаваля были в это время очень благоприятными. Человек скромных потребностей, интересовавшийся лишь тем, что имело непосредственное отношение к технике, он тратил все свои огромные средства только на оборудование своих мастерских и лабораторий и ничего - на себя. Он не курил, он с отвращением, уступая просьбам, пил вино в редких и очень торжественных случаях; единственным его пристрастием было крепкое кофе. Он был расчетлив в житейских делах, но на свои опыты, он никогда не жалел никаких денег. Для этой цели он постепенно продавал принадлежавшие ему акции «Сепаратора», с каждым днем все выше и выше оценивавшиеся на бирже, и укреплял материальную базу для своих изобретательских работ. Он понимал, что готовое изобретение может вернуть ему все затраченные средства, но что капиталистическое хозяйство не даст ему ни одного гроша для предварительных опытов и изысканий.

К моменту возникновения идеи турбины Лаваль, осуществив свои мечты, имел прекрасную лабораторию и строящиеся мастерские. У него работал штат техников и инженеров. Весь тогдашний квартал между Хантверкарегатаном и озером Мелар, влево от Пильгатана, принадлежал Лавалю. Здесь располагались его мастерские и лаборатория, где производились самые разнообразные опыты, начиная от ветряных двигателей и кончая ацетиленовыми лампами.

С величайшим энтузиазмом Лаваль взялся за осуществление паровой турбины, мысль о которой так долго вынашивалась им.

Теоретически вопрос для изобретателя был ясен.

Полная работа пара в проектируемой им турбине разделялась на два процесса: во-первых, преобразование потенциальной энергии пара в кинетическую, и во-вторых, передача кинетической энергии пара движущимся частям машины - лопаткам колеса.

Первая часть работы пара, а именно преобразование потенциальной энергии пара в кинетическую, должна была совершаться в особом аппарате, построенном на принципе конической насадки. В нем давление пара наиболее полно преобразовывалось в скорость истечения. Этот аппарат, получивший впоследствии известность как «сопло Лаваля», представляет собой коническую трубу с постепенным расширением к выходу. Расширяющееся сопло позволяет понизить давление пара, подводимого из котла, и повысить скорость его истечения до скорости, значительно превышающей скорость распространения звука.

Получив 29 апреля 1889 года патент на применение этого аппарата в турбине, Лаваль перешел к решению всей проблемы в целом.

Этому предшествовали опыты в мастерских. Задача, которую он в эти годы решал, заключалась в том, чтобы превратить полученную при расширении пара энергию в механическую работу турбинного колеса с одним рядом лопаток на нем.

Турбина Лаваля

Задача эта, легкая на первый взгляд, оказывалась в действительности чрезвычайно трудной. Возбужденный, небритый, питавшийся едва ли не одним крепким кофе, Лаваль то просиживал целые ночи за письменным столом, то безвыходно с медвежьим терпением трудился в мастерских, то бродил, как помешанный, с пустыми глазами, из комнаты в комнату, снова садился к столу и считал и чертил и вновь пересчитывал, и вновь перечерчивал. Иногда он раскрывал старые руководства и новые теоретические исследования и бросал их с досадой, натыкаясь повсюду на ошибки расчетов, опытов и заключений.

«Что нужно?» спрашивал он самого себя, как строгий учитель растерявшегося школьника, и вслух заставлял себя твердить, как заданный урок:

Прежде всего скорость турбинного колеса на окружности должна быть чрезвычайно значительной для того, чтобы результаты оказались экономически выгодными. Для достижения такой большой окружной скорости при колесе не слишком больших размеров нужно иметь неслыханное число оборотов колеса, порядка 20–30 тысяч оборотов в минуту…

О, эти скорости вполне соответствовали творческим стремлениям Лаваля! Но как сконструировать вал и подшипники, которые давали бы возможность без вибрации работать турбинному колесу с такой неслыханной скоростью? и как добиться прочности и уравновешенности турбинного диска?

В самом деле, если представить себе колесо, диаметром всего полметра, делающее 30 тысяч оборотов в минуту, т. е. имеющее окружную скорость в 340 метров в секунду, и допустить, что это колесо не сбалансировано на периферии хотя бы только на один грамм, то центробежная сила, которая при такой скорости возникнет, разнесет на куски все колесо!

Этот турбинный вал, это турбинное колесо теоретически готовой машины, но практически еще далекой от осуществления, преследовали Лакали даже во сне. Он видел, как диски разлетались на куски, разбивавшие стены противоположных домов, калечившие людей. Просыпаясь в ужасе, он опять садился за стол, пил кофе и думал. Не было сил, которые могли бы остановить творческое воображение этого упрямого человека, как ни велики были трудности, но ведь где-то в природе существовали же и законы их преодоления.

И Лаваль продолжал искать.

В мастерских опыты не прекращались. Применять для турбинного колеса обыкновенный жесткий, мощный вал оказывалось совершенно невозможно: во время опытов с такими валами в турбине при скорости 30–40 тысяч оборотов, машина легко приходила в дрожание, вал изгибался, и немыслимо было добиться хотя какой-нибудь надежности в эксплуатации. Опыты повторялись при самых разнообразных условиях, но вибрации машины устранить не удавалось. Надо было что-то принципиально изменить, и, бросая все, Лаваль снова и снова начинал искать выхода из положения.

Поиски были безуспешны до самого конца 1888 года. И как это часто бывает в трудных положениях, выход был найден, но совсем не там, где искал его Лаваль. Задача решалась не жесткостью, мощностью и прочностью системы, к чему стремился Лаваль сначала, а, наоборот, ее чрезвычайной гибкостью и податливостью.

Решению задачи предшествовало знакомство Лаваля с изобретателем этой системы, бароном Бетгольсгеймом, который в это время явился в Стокгольм по приглашению Бернстрема для переговоров о покупке его знаменитого патента «Альфа» акционерным обществом «Сепаратор».

Это был очень серьезный шаг нового директора общества. Хотя Лаваль, занятый в своих мастерских, давно уже отвлекся от непосредственного участия в делах «Сепаратора», но на этот раз, по настоянию друзей, он должен был принять живое участие в обсуждении стратегических планов Бернстрема, вступившего в решительную схватку со всеми конкурентами общества на мировом рынке.

Лаваль был нужен правлению и в качестве технического советника, так как в данном случае речь шла не только о чисто коммерческом предприятии, но и об изменении конструкции сепараторов, до сего времени выпускавшихся в продажу.

Планы Бернстрема сводились к тому, чтобы с патентом Бетгольсгейма выпустить на рынок машину, с которой вообще немыслимо было бы конкурировать.

Из книги Как уходили кумиры. Последние дни и часы народных любимцев автора Раззаков Федор

ТУРБИНА НИКА ТУРБИНА НИКА (поэт; покончила с собой (выбросилась из окна) 11 мая 2002 года на 28-м году жизни; похоронена на Ваганьковском кладбище в Москве).Турбина стала знаменита в середине 80-х, когда ее стихи стали публиковаться во всех советских СМИ. В 12 лет Ника получила в

Из книги Густав Лаваль автора Гумилевский Лев Иванович

Развитие турбины Лаваля и ее значение Как только в мастерских Лаваля были изготовлены первые турбины и произведено их испытание, доказавшее не только возможность, но и выгодность их практического применения, изобретатель, нисколько не сомневаясь в том, что вслед за тем

Из книги Память, согревающая сердца автора Раззаков Федор

Личные и общественные идеалы Лаваля Успехи Парсонса в области паротурбостроения, оценивавшиеся мировой технической печатью очень высоко, мало волновали Лаваля: предоставив другим работать в этой области, он сам обратился к новым проблемам, стоявшим, по его глубокому

Из книги В круге последнем автора Решетовская Наталья Алексеевна

Реверсивная турбина Лаваля Развитию своему в качестве судовых двигателей паровые турбины были всецело обязаны настойчивой, упорной и долголетней деятельности Парсонса. Уже в 1894 году Парсонсу, после долгих и осторожных экспериментов удалось сконструировать турбины,

Из книги автора

ТУРБИНА Ника ТУРБИНА Ника (поэтесса; покончила с собой (выбросилась из окна) 11 мая 2002 года на 28-м году жизни; похоронена на Ваганьковском кладбище в Москве). Турбина стала знаменита в середине 80-х, когда ее стихи стали публиковаться во всех советских СМИ. В 12 лет Ника

Из книги автора

У Пьера Лаваля Поведение и политические концепции Солженицына удивительно схожи с поведением и взглядами предателя французского народа Пьера Лаваля. Оба во имя «избавления» от существующего в государстве «зла» ратовали за поражение нации. И тот и другой - апологеты

Изобретение паровых турбин.

Наряду с гидротурбинами, описанными в одной из предыдущих глав, огромное значение для энергетики и электрификации имело изобретение и распространение паровых турбин. Принцип их действия был подобен гидравлическим, с той, однако, разницей, что гидравлическую турбину приводила во вращение струя воды, а паровую – струя разогретого пара. Точно так же, как водяная турбина представляла собой новое слово в истории водяных двигателей, паровая продемонстрировала новые возможности парового двигателя.

Старая машина Уатта, отметившая в третьей четверти XIX века свой столетний юбилей, имела низкий КПД, поскольку вращательное движение получалось в ней сложным и нерациональным путем. В самом деле, как мы помним, пар двигал здесь не само вращающееся колесо, а оказывал давление на поршень, от поршня через шток, шатун и кривошип движение передавалось на главный вал. В результате многочисленных передач и преобразований огромная часть энергии, полученной от сгорания топлива, в полном смысле этого слова без всякой пользы вылетала в трубу. Не раз изобретатели пытались сконструировать более простую и экономическую машину – паровую турбину, в которой струя пара непосредственно вращала бы рабочее колесо. Несложный подсчет показывал, что она должна иметь КПД на несколько порядков выше, чем машина Уатта. Однако на пути инженерной мысли оказывалось множество препятствий. Для того чтобы турбина действительно превратилась в высокоэффективный двигатель, рабочее колесо должно было вращаться с очень высокой скоростью, делая сотни оборотов в минуту. Долгое время этого не могли добиться, так как не умели сообщить надлежащую скорость струе пара.

Первый важный шаг в разработке нового технического средства, потеснившего паровую машину, сделал шведский инженер Карл Густав Патрик Лаваль в 1889 г. .Паровая турбина Лаваля представляет собой колесо с лопатками. Струя воды, образующаяся в котле, вырывается из трубы (сопла), давит на лопатки и раскручивает колесо. Экспериментируя с разными трубками дня подачи пара, конструктор пришёл к выводу, что они должны иметь форму конуса. Так появилось, применяемое до нашего времени, сопло Лаваля.

Только в 1883 году шведу Густаву Лавалю удалось преодолеть многие затруднения и создать первую работающую паровую турбину. За несколько лет до этого Лаваль получил патент на сепаратор для молока. Для того чтобы приводить его в действие, нужен был очень скоростной привод. Ни один из существовавших тогда двигателей не удовлетворял поставленной задаче. Лаваль убедился, что только паровая турбина может дать ему необходимую скорость вращения. Он стал работать над ее конструкцией и в конце концов добился желаемого. Турбина Лаваля представляла собой легкое колесо, на лопатки которого через несколько поставленных под острым углом сопел наводился пар. В 1889 году Лаваль значительно усовершенствовал свое изобретение, дополнив сопла коническими расширителями. Это значительно повысило КПД гидротурбины и превратило ее в универсальный двигатель.

Принцип действия турбины был чрезвычайно прост. Пар, разогретый до высокой температуры, поступал из котла по паровой трубе к соплам и вырывался наружу. В соплах пар расширялся до атмосферного давления. Благодаря увеличению объема, сопровождавшему это расширение, получалось значительное увеличение скорости вытекания (при расширении от 5 до 1 атмосферы скорость паровой струи достигала 770 м/с). Таким образом заключенная в паре энергия передавалась лопастям турбины. Число сопел и давление пара определяли мощность турбины. Когда отработанный пар не выпускали прямо в воздух, а направляли, как в паровых машинах, в конденсатор и сжижали при пониженном давлении, мощность турбины была наивысшей. Так, при расширении пара от 5 атмосфер до 1/10 атмосферы скорость струи достигала сверхзвуковой величины.

Несмотря на кажущуюся простоту, турбина Лаваля была настоящим чудом инженерной мысли. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться от своего детища бесперебойной работы. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную нагрузку на ось и перегрузку подшипников. Чтобы избежать этого, Лаваль придумал насадить колесо на очень тонкую ось, которая при вращении могла бы слегка прогибаться. При раскручивании она сама собой приходила в строго центральное положение, удерживаемое затем при любой скорости вращения. Благодаря этому остроумному решению разрушающее действие на подшипники было сведено до минимума.

Едва появившись, турбина Лаваля завоевала всеобщее признание. Она была намного экономичнее старых паровых двигателей, очень проста в обращении, занимала мало места, легко устанавливалась и подключалась. Особенно большие выгоды турбина Лаваля давала при ее соединении с высокоскоростными машинами: пилами, сепараторами, центробежными насосами. Ее с успехом применяли также как привод электрогенератора, но все-таки для него она имела чрезмерно большую скорость и поэтому могла действовать только через редуктор (систему зубчатых колес, понижавших скорость вращения при передаче движения от вала турбины на вал генератора).

В 1884 году английский инженер Парсон получил патент на многоступенчатую реактивную турбину, которую он изобрел специально для приведения в действие электрогенератора. В 1885 году он сконструировал многоступенчатую реактивную турбину, получившую в дальнейшем широкое применение на тепловых электростанциях. Она имела следующее устройство, напоминающее устройство реактивной гидротурбины. На центральный вал был насажен ряд вращающихся колес с лопатками. Между этими колесами находились неподвижные венцы (диски) с лопатками, имевшими обратное направление. Пар под большим давлением подводился к одному из концов турбины. Давление на другом конце было небольшое (меньше атмосферного). Поэтому пар стремился пройти сквозь турбину. Сначала он поступал в промежутки между лопатками первого венца. Эти лопатки направляли его на лопатки первого подвижного колеса. Пар проходил между ними, заставляя колеса вращаться. Дальше он поступал во второй венец. Лопатки второго венца направляли пар между лопатками второго подвижного колеса, которое тоже приходило во вращение. Из второго подвижного колеса пар поступал между лопатками третьего венца и так далее. Всем лопаткам была придана такая форма, что сечение междулопаточных каналов уменьшалось по направлению истечения пара. Лопатки как бы образовывали насаженные на вал сопла, из которых, расширяясь, истекал пар. Здесь использовалась как активная, так и реактивная его сила. Вращаясь, все колеса вращали вал турбины. Снаружи устройство было заключено в крепкий кожух. В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии, а в 1899 году в Эльберфельде была построена первая электростанция с паровыми турбинами Парсона. Между тем Парсон старался расширить сферу применения своего изобретения. В 1894 году он построил опытное судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость – 60 км/ч. После этого паровые турбины стали устанавливать на многих быстроходных судах.

Паротурбинная установка - это непрерывно действующий тепловой агрегат, рабочим телом которого является вода и водяной пар. Паровая турбина является силовым двигателем, в котором потенциальная энергия пара превращается в кинетическую, а кинетическая в свою очередь преобразуется в механическую энергию вращения ротора. Ротор турбины непосредственно или при помощи зубчатой передачи соединяется с рабочей машиной. В зависимости от назначения рабочей машины паровая турбина может быть применена в самых различных областях промышленности: в энергетике, на транспорте, в морском и речном судоходстве и т.д. Включает в себя паровую турбину и вспомогательное оборудование.

История создания паровой турбины

В основе действия паровой турбины лежат два принципа создания окружного усилия на роторе, известные с давних времен, - реактивный и активный. Еще в 130 г. до н.э. Герон Александрийский изобрел устройство под названием "эолипил". В соответствии с рисунком 2.1 оно представляло собой наполнявшуюся паром полую сферу с двумя Г-образными соплами, расположенными с противоположных сторон и направленными в разные стороны. Пар вытекал из сопел с большой скоростью, и за счет возникающих сил реакции сфера вращалась.

Второй принцип основан на преобразовании потенциальной энергии пара в кинетическую. Его можно проиллюстрировать на примере машины Джованни Бранки, построенной в 1629 г и изображенной на рисунке 2.2. В этой машине струя пара приводила в движение колесо с лопатками, напоминающее колесо водяной мельницы.

В паровой турбине используются оба указанных принципа. Струя пара под высоким давлением направляется на криволинейные лопатки, закрепленные на дисках. При обтекании лопаток струя отклоняется, и диск с лопатками начинает вращаться. Двигаясь между лопатками в расширяющемся канале (ведь толщина лопаток по мере приближения к хвостовику уменьшается), пар расширяется и ускоряется. В соответствии с законами сохранения энергии и импульса на колесо турбины действует сила, раскручивающая его. В результате энергия давления (потенциальная энергия) пара преобразуется в кинетическую энергию вращения турбины.

Первые турбины, подобные машине Бранки, обладали ограниченной мощностью, поскольку паровые котлы не были способны создавать высокое давление. Как только появилась возможность получать пар высокого давления, изобретатели вновь обратились к турбине. В 1815 г. инженер Ричард Тревитик установил два сопла на ободе колеса паровоза и пропустил через них пар. На сходном принципе было основано устройство лесопильной машины, построенной в 1837 г. американцем Уильямом Эйвери. В одной лишь Англии за 20 лет, с 1864 по 1884 г., было запатентовано более сотни изобретений, так или иначе относящихся к турбинам. Но ни одна из этих попыток не завершилась созданием пригодной для промышленности машины.

Частично эти неудачи объяснялись непониманием физики расширения пара. Дело в том, что плотность пара намного меньше плотности воды, а его "упругость" намного превосходит упругость жидкости, поэтому скорость струи пара в паровых турбинах получается гораздо большей, чем скорость воды в водяных турбинах. Экспериментально было установлено, что к.п.д. турбины достигает максимума тогда, когда окружная скорость лопаток равна приблизительно половине скорости струи пара. Именно по этой причине первые турбины имели очень высокие скорости вращения.

Но большая частота вращения нередко приводила к разрушению вращающихся частей турбины из-за действия центробежных сил. Уменьшения угловой скорости при сохранении окружной скорости можно было бы добиться путем увеличения диаметра диска, на котором крепились лопатки. Однако реализовать эту идею было затруднительно, так как количества вырабатываемого пара высокого давления недоставало для машины большого размера. В связи с этим первые опытные турбины имели небольшой диаметр и короткие лопатки.

Другая проблема, связанная со свойствами пара, доставляла еще больше трудностей. Скорость пара, вырывающегося из сопла, пропорциональна отношению давлений на входе и выходе сопла и достигает максимального значения при отношении давлений, приблизительно равном двум. Дальнейшее повышение перепада давления уже не ведет к увеличению скорости струи. Таким образом, конструкторы не могли в полной мере использовать возможности пара с высоким давлением при использовании сопла с постоянным или суживающимся каналом.

В 1889 г. шведский инженер Карл Густав де Лаваль применил сопло, расширяющееся на выходе. Такое сопло позволило получить гораздо большую скорость пара, и вследствие этого скорость вращения ротора турбины также существенно увеличилась.

На рисунке 2.4 изображена паровая турбина Лаваля. В ней пар поступает к соплу, приобретает в нем значительную скорость и направляется в рабочие лопатки, расположенные на ободе диска турбины. При повороте струи пара в каналах рабочих лопаток возникают силы, раскручивающие диск и связанный с ним вал турбины. Для получения необходимой мощности на одноступенчатой турбине необходимы очень высокие скорости потока пара. Меняя конфигурацию расширяющегося сопла, удалось получить значительную степень расширения пара и, соответственно, высокую скорость (1200…1500 м/с) истечения пара.

Для лучшего использования больших скоростей пара Лаваль разработал такую конструкцию диска, которая выдерживала окружные скорости до 350 м/с, а частота вращения у некоторых турбин достигала 32000 мин-1.

Турбины, у которых весь процесс расширения пара и связанного с ним ускорения парового потока происходит в соплах, получили название активных. К таким устройствам, в частности, можно отнести и турбину Бранки.

В дальнейшем совершенствование активных паровых турбин пошло по пути использования последовательного расширения пара в нескольких ступенях, расположенных друг за другом. В таких турбинах, разработанных в конце прошлого столетия французским ученым Рато и усовершенствованных конструктором Целли, ряд дисков, укрепленных на общем валу, разделен перегородками. В этих перегородках устраивались профилированные отверстия - сопла. На каждой из построенных таким образом ступеней срабатывается часть энергии пара. Преобразование кинетической энергии парового потока происходит без дополнительного расширения пара в каналах рабочих лопаток. Активные многоступенчатые турбины получили широкое распространение в стационарных установках, а также в качестве судовых двигателей.

Наряду с турбинами, в которых поток пара движется приблизительно параллельно оси вала турбины и которые называются аксиальными турбинами, были созданы так называемые радиальные турбины, в которых пар течет в плоскости, перпендикулярной оси турбины. Среди этого типа турбин наибольший интерес представляет турбина братьев Юнгстрем, предложенная в 1912 г.

На боковых поверхностях дисков кольцами постепенно возрастающего диаметра располагаются лопатки реактивных ступеней. Пар в турбину подводится по трубам и далее через отверстия в дисках направляется к центральной камере. Из нее пар течет к периферии через каналы лопаток, укрепленных на дисках. В отличие от обычной турбины, в конструкции братьев Юнгстрем нет неподвижных сопел или направляющих лопаток. Оба диска вращаются во встречных направлениях, поэтому мощность, развиваемая турбиной, передается на два вала. Турбина описанной конструкции получилась весьма компактной.

И все же, несмотря на ряд новых конструктивных решений, примененных в одноступенчатых активных турбинах, их экономичность была невысока. Кроме того, необходимость редукторной передачи для уменьшения частоты вращения ведущего вала электрогенератора тормозила распространение одноступенчатых турбин. Поэтому турбины Лаваля, на раннем этапе турбостроения широко применявшиеся в качестве агрегатов небольшой мощности (до 500 кВт), в дальнейшем уступили место турбинам других типов.

Парсонс создал турбину принципиально новой конструкции. Она отличалась меньшей частотой вращения, и в то же время в ней максимально использовалась энергия пара. Дело в том, что в турбине Парсонса пар расширялся постепенно по мере прохождения через 15 ступеней, каждая из которых представляла собой два венца лопаток: один - неподвижный (с направляющими лопатками, закрепленными на корпусе турбины), другой - подвижный (с рабочими лопатками на диске, закрепленном на вращающемся валу). Плоскости лопаток неподвижных и подвижных венцов были взаимно перпендикулярны.

Пар, направляемый на неподвижные лопатки, расширялся в междулопаточных каналах, скорость его увеличивалась, и он, попадая на подвижные лопатки, заставлял их вращаться. В межлопаточных каналах подвижных лопаток пар дополнительно расширялся, скорость струи возрастала, и возникавшая реактивная сила толкала лопатки.

Благодаря внедрению подвижных и неподвижных венцов лопаток высокая скорость вращения стала ненужной. На каждом из тридцати венцов многоступенчатой турбины Парсонса пар расширялся незначительно, теряя некоторую долю своей кинетической энергии. На каждой ступени (паре венцов) давление падало лишь на 10 %. Ступенчатое расширение пара, лежащее в основе конструкций современных турбин, было лишь одной из многих оригинальных идей, воплощенных Парсонсом.

Другой плодотворной идеей была организация подвода пара к средней части вала. Здесь поток пара разделялся и шел по двум направлениям к левому и правому концу вала. Расход пара в обоих направлениях был одинаковым. Одно из преимуществ, которое давало разделение потока, заключалось в том, что продольные (осевые) силы, возникавшие из-за давления пара на лопатки турбины, уравновешивались. Таким образом, отпадала необходимость в упорном подшипнике. Описанная конструкция используется во многих современных паровых турбинах.

И все-таки первая многоступенчатая турбина Парсонса имела слишком большую частоту вращения - 18000 мин-1. Центробежная сила, действовавшая на лопатки турбины, в 13 тысяч раз превышала силу тяжести. Для того, чтобы уменьшить опасность разрушения вращающихся частей, Парсонс предложил простое решение. Каждый диск изготовлялся из цельного медного кольца, а пазы, в которые входили лопатки, располагались по окружности диска и представляли собой щели, ориентированные под углом 45°. Подвижные диски насаживались на вал и фиксировались на его выступе. Неподвижные венцы состояли из двух полуколец, которые прикреплялись сверху и снизу к корпусу турбины. Лопатки турбины Парсонса были плоскими. Для компенсации уменьшения скорости потока пара по мере его движения к последним ступеням в первой машине Парсонса были реализованы два технических решения: ступенчато наращивался диаметр диска и увеличивалась длина лопаток от 5 до 7 мм. Кромки лопаток были скошены, чтобы улучшить условия обтекания струей.

Парсонс был младшим сыном в семье, получившей во владение землю в Ирландии. Его отец, граф Росс, был талантливым ученым. Он внес большой вклад в технологию отливки и шлифовки больших зеркал для телескопов.

Парсонсы не отдавали своих детей в школу. Их учителями были астрономы, которых граф приглашал для ночных наблюдений с помощью телескопов; в дневное время эти ученые обучали детей. Всячески поощрялись и занятия детей в домашних мастерских.

Чарлз поступил в Тринити-колледж в Дублине, а затем перешел в Сент-Джонс - колледж Кембриджского университета, который окончил в 1877 г.

Поворот в судьбе Парсонса произошел, когда он стал учеником Джорджа Армстронга, известного фабриканта корабельных орудий, и начал работать на его Элсуикской фабрике в г. Ньюкаслапон-Тайне. Причины, которые побудили Парсонса принять такое решение, остались неизвестными: в то время дети из богатых семей редко избирали карьеру инженера. Парсонс завоевал репутацию самого трудолюбивого ученика Армстронга. В период стажировки он получил разрешение работать на самой последней новинке - паровой машине с вращающимися цилиндрами - и между 1877 и 1882 гг. запатентовал несколько своих изобретений.

Первые опыты с турбинами Парсонс начал проводить, работая у Армстронга. С 1881 по 1883 г., т.е. сразу после стажировки, он работал над созданием торпеды, приводимой в движение газом. Особенность движителя торпеды состояла в том, что сгорающее топливо создавало струю газа высокого давления. Струя ударялась в крыльчатку, заставляя ее вращаться. Крыльчатка, в свою очередь, приводила во вращение гребной винт торпеды.

Работы над газовыми турбинами Парсонс прекратил в 1883 г., хотя в его патенте 1884 г. описан современный цикл работы такой турбины. Впоследствии он дал этому объяснение. "Опыты, проводимые много лет назад, - писал он, - и частично имевшие целью удостовериться в реальности газовой турбины, убедили меня в том, что с теми металлами, которые имелись в нашем распоряжении... было бы ошибкой использовать для приведения лопаток во вращение раскаленную струю газов - в чистом ли виде, или в смеси с водой или паром". Это было прозорливое замечание: лишь спустя десять лет после смерти Парсонса появились металлы, обладавшие необходимыми качествами.

В апреле 1884 г. он оформил два предварительных патента, а в октябре и ноябре того же года дал полное описание изобретения. Для Парсонса это был невероятно продуктивный период. Он решил создать и динамо-машину, работающую от турбины на высоких скоростях, которые доступны немногим из современных электрических машин. Впоследствии Парсонс часто повторял, что это изобретение так же важно, как и создание самой турбины. До сегодняшних дней основным применением паровой турбины остается приведение в движение электрических генераторов.

В ноябре 1884 г., когда был создан первый образец турбины, достопочтенному Чарлзу А. Парсонсу было всего 30 лет. Инженерный гений и чутье на потребности рынка сами по себе были недостаточным условием для того, чтобы его детище благополучно вступило в жизнь. На ряде этапов Парсонс должен был вкладывать свои собственные средства, для того чтобы проделанная работа не пропала даром. Во время судебного разбирательства в 1898 г., затеянного с целью продлить срок действия некоторых его патентов, было установлено, что на создание турбины Парсонс израсходовал личных денег в сумме 1107 фунтов 13 шиллингов и 10 пенсов.

XII столетие ознаменовалось появлением первой паровой машины. Это являлось тем событием, когда в промышленности и технике появились механизированные машины, постепенно вытеснившие человеческий труд. Развитие промышленности не стояло на месте. Вся история её развития характеризуется поиском решений изобретателями разных стран одной задачи - создания поровой турбины.

Можно утверждать, что история изобретения турбин берёт начало в XIX столетии, когда шведским ученым Карлом Патриком Лавалем был изобретён молочный сепаратор. В поисках решения вопроса об увеличении скорости в данном приборе, Карл изобрёл паровую турбину, которая была сконструирована в конце XIX века. Турбина имела вид колеса с лопастями, струя пара, выходящая из трубы, давила на эти лопасти и колесо раскручивалось. Трубки для подачи пара учённый подбирал различной величины и формы долгое время, и в результате длительных экспериментов сделал вывод, что трубка должна быть конусовидной формы. Это устройство используется по сегодняшний день, и имеет название «сопло Лаваля». Не смотря на то, что изобретение Лаваля было достаточно простым на первый взгляд устройством, оно стало чудом инженерии. А через некоторый период времени учёными - теоретиками было доказано, что изобретение паровых турбин с использованием сопла Ловаля даёт самый высокий результат.

Далее история изобретения турбин продвигается к началу XX столетия, когда французский изобретатель Огюст Рато сконструировал многоступенчатую паровую турбину, в которой были рассчитаны оптимальные показатели падения давления для каждой из ступени турбины.

После всего, американским учёным Гленом Кертисом, была разработана турбина, использовавшая совершено новую систему, она имела маленькие размеры и надёжную конструкцию. Данные турбины использовались при конструкции двигательных систем кораблей, их устанавливали сначала на миноносцах, потом на военных кораблях и, наконец, на кораблях пассажирских.

Таким образом, история изобретения турбин раскрывает несколько путей поиска удобного и экономичного теплового двигателя учёными XIX столетия. Одними изобретателями разрабатывался в котором топливо бы сгорало в цилиндре, поэтому такой двигатель хорошо бы помещался в транспорте. Другими учёнными совершенствовался с целью повышения его мощности и экономичности.

На сегодняшний день история изобретения турбин начинается с таких великих имён, как Лаваль, Парсонс и Кертис. Все эти учённые и изобретатели сделали огромный вклад в развитие промышленности и транспортной связи во всём мире. Все их достижения имели большую важность для всего человечества. А самым главным стало распространение такого вида энергии, как электричество. В настоящее время изобретения данных учёных широко используются во всём мире при строительстве кораблей и электростанций.

К концу прошлого столетия промышленная революция достигла поворотной точки своего развития. За полтора века до этого паровые двигатели значительно усовершенствовались — они могли работать от любых видов горючего и приводить в движение самые разнообразные механизмы. Большое влияние на улучшение конструкции паровых машин оказало такое техническое достижение, как изобретение динамо-машины, которая позволяла получать электроэнергию в больших количествах. По мере того как росли потребности человека в энергии, увеличивались и размеры паровых машин, пока их габариты не стали сдерживаться ограничениями на механическую прочность. Для дальнейшего развития промышленности требовался новый способ получения механической энергии.

Такой способ появился в 1884 г., когда англичанин (1854-1931) изобрел первый пригодный для промышленного применения турбогенератор. Десятью годами позже Парсонс занялся изучением возможности применения своего изобретения для средств передвижения. Несколько лет упорного труда увенчались успехом: оснащенный турбиной пароход «Turbinia» развивал скорость 35 узлов — больше, чем любой корабль Королевского флота. По сравнению с поршневыми паровыми машинами, использующими возвратно-поступательное движение поршня, турбины более компактны и проще устроены. Поэтому со временем, когда мощность и к.п.д. турбин значительно увеличились, они вытеснили двигатели прежних конструкций. В настоящее время во всем мире паровые турбины используются на тепловых электростанциях в качестве приводов генераторов электрического тока. Что же касается использования паровых турбин в качестве двигателей для пассажирских судов, то здесь безраздельному их господству был положен конец в первой половине нашего столетия, когда широкое распространение получили дизели. Современная паровая турбина унаследовала многие особенности первой машины, изобретенной Парсонсом.


Реактивныи и активный принципы, лежащие в основе действия паровой турбины. Первый из них был использован в устройстве «эолипила» (а), придуманного Героном Александрийским: сфера, в которой находится пар, вращается за счет действия сил реакции, возникающих при выходе пара из пустотелых трубок. Во втором случае (b) струя пара, направленная на лопатки, отклоняется и благодаря этому колесо вращается. Лопатки турбины (с) также отклоняют струю пара; кроме того, проходя между лопатками, пар расширяется и ускоряется, и возникающие при этом силы реакции толкают лопатки.

В основе действия паровой турбины лежат два принципа создания окружного усилия на роторе, известных с давних времен, — реактивный и активный. Еще в 130 г. до н.э. Герон Александрийский изобрел устройство под названием «эолипил». Оно представляло собой наполнявшуюся паром полую сферу с двумя Г-образными соплами, расположенными с противоположных сторон и направленными в разные стороны. Пар вытекал из сопел с большой скоростью, и за счет возникающих сил реакции сфера начинала вращаться.

Второй принцип основан на преобразовании потенциальной энергии пара в кинетическую, которая совершает полезную работу. Его можно проиллюстрировать на примере машины Джованни Бранки, построенной в 1629 г. В этой машине струя пара приводила в движение колесо с лопатками, напоминающее колесо водяной мельницы.

В паровой турбине используются оба указанных принципа. Струя пара под высоким давлением направляется на криволинейные лопатки (подобные лопастям вентилятора), насаженные на диск. При обтекании лопаток струя отклоняется, и диск с лопатками начинает вращаться. Между лопатками пар расширяется и ускоряет свое движение: в результате энергия давления пара переходит в кинетическую энергию.

Первые турбины, подобные машине Бранки, не могли развивать достаточной мощности, поскольку паровые котлы не способны были создавать высокого давления. Первые действующие паровые машины Томаса Сейвери, Томаса Ньюкомена и других не нуждались в паре высокого давления. Пар низкого давления вытеснял воздух под поршнем и конденсировался, создавая разрежение. Поршень под действием атмосферного давления опускался, производя полезную работу. Опыт в постройке и использовании паровых котлов для этих так называемых атмосферных двигателей постепенно побудил инженеров сконструировать котлы, способные создавать и выдерживать давление, намного превосходящее атмосферное.

С появлением возможности получать пар высокого давления изобретатели вновь обратились к турбине. Были испробованы различные конструктивные варианты. В 1815 г. инженер Ричард Тревитик попытался установить два сопла на ободе колеса двигателя для паровоза и пропускать через них пар из котла. Затея Тревитика провалилась. На сходном принципе было основано устройство лесопильной машины, построенной в 1837 г. Уильямом Эйвери в Сиракьюсе (шт. Нью-Йорк). В одной лишь Англии за 100 лет, с 1784 по 1884 г., было запатентовано 200 изобретений, так или иначе относящихся к турбинам, причем больше половины этих изобретений было зарегистрировано в двадцатилетний период — с 1864 по 1884 г.

Ни одна из этих попыток не завершилась созданием промышленно пригодной машины. Частично эти неудачи объяснялись незнанием физических законов, описывающих расширение пара. Плотность пара намного меньше плотности воды, а его «упругость» намного больше, поэтому скорость струи пара в паровых турбинах гораздо больше, чем скорость воды в водяных турбинах, с которыми приходилось иметь дело изобретателям. Было установлено, что к.п.д. турбины становится максимальным тогда, когда скорость лопаток примерно равна половине скорости пара; поэтому первые турбины имели очень высокие скорости вращения.

Большое число оборотов было причиной ряда нежелательных эффектов, среди которых не последнюю роль играла опасность разрушения вращающихся частей под действием центробежных сил. Скорость вращения турбины можно было бы уменьшить, увеличив диаметр диска, на котором крепились лопатки. Однако это было невозможно. Расход пара в ранних устройствах не мог быть большим, а значит, не могло быть велико и поперечное сечение выходного отверстия. Вследствие этой причины первые опытные турбины имели небольшой диаметр и короткие лопатки.

Другая проблема, связанная со свойствами пара, доставляла еще больше трудностей. Скорость пара, проходящего через сопло, изменяется пропорционально отношению давления на входе к давлению на выходе. Максимальное значение скорости в суживающемся сопле достигается, однако, при отношении давлений, приблизительно равном двум; дальнейшее повышение перепада давления уже не влияет на увеличение скорости струи. Таким образом, конструкторы не могли в полной мере использовать возможности пара с высоким давлением: существовал предел для количества запасенной паром высокого давления энергии, которая могла быть превращена в кинетическую энергию и передана лопаткам. В 1889 г. шведский инженер Карл Густав де Лаваль применил сопло, расширяющееся на выходе. Такое сопло позволило получить гораздо большие скорости пара, и вследствие этого скорость вращения ротора в турбине Лаваля существенно увеличилась.

Парсонс создал принципиально новую конструкцию турбины. Она отличалась меньшей скоростью вращения, и в то же время в ней максимально использовалась энергия пара. Это достигалось за счет того, что в турбине Парсонса пар расширялся постепенно по мере прохождения через 15 ступеней, каждая из которых представляла собой пару венцов лопаток: один — неподвижный (с направляющими лопатками, закрепленными на корпусе турбины), другой — подвижный (с рабочими лопатками на диске, насаженном на вращающийся вал). Лопатки неподвижных и подвижных венцов были ориентированы в противоположных направлениях, т.е. так, что если бы оба венца были подвижными, то пар заставлял бы их вращаться в разные стороны.


Венцы лопаток турбины представляли собой медные кольца с лопатками, закрепленными в прорезях под углом 45°. Подвижные венцы закреплялись на валу, неподвижные состояли из двух половинок, жестко связанных с корпусом (верхняя половина корпуса снята).


Чередующиеся подвижные и неподвижные венцы лопаток (а) задавали направление движения пара. Проходя между неподвижными лопатками, пар расширялся, ускорялся и направлялся на подвижные лопатки. Здесь пар также расширялся, создавая силу, которая толкала лопатки. Направление движения пара показано на одной из 15 пар венцов (b).

Пар, направляемый на неподвижные лопатки, расширялся в междулопаточных каналах, скорость его увеличивалась, и он отклонялся так, что попадал на подвижные лопатки и заставлял их вращаться. В междулопаточных каналах подвижных лопаток пар также расширялся, на выходе создавалась ускоренная струя, и возникающая реактивная сила толкала лопатки.

При наличии многих подвижных и неподвижных венцов лопаток высокая скорость вращения стала ненужной. На каждом из 30 венцов многоступенчатой турбины Парсонса пар расширялся незначительно, теряя некоторую долю своей кинетической энергии. На каждой ступени (паре венцов) давление падало лишь на 10%, и максимальная скорость пара в результате оказывалась равной 1/5 скорости струи в турбине с одной ступенью. Парсонс полагал, что при столь малых перепадах давления пар можно рассматривать как малосжимаемую жидкость, подобную воде. Это предположение дало ему возможность с высокой степенью точности сделать расчеты скорости пара, к.п.д. турбины и формы лопаток. Идея поступенчатого расширения пара, которая лежит в основе конструкций современных турбин, была лишь одним из многих оригинальных замыслов, воплощенных Парсонсом.

Другим изобретением стал новый тип подшипника, предназначенного специально для быстро вращающегося вала. Хотя Парсонсу и удалось снизить скорость вращения турбины, она все же оставалась раз в десять выше, чем у других двигателей. Поэтому изобретателю пришлось столкнуться с явлением, известным как «биение вала». Уже в ту пору было известно, что каждый вал имеет свою характерную критическую скорость вращения, при которой даже небольшой разбаланс создает значительное изгибающее усилие. Выяснилось, что критическая скорость вращения связана с собственной частотой поперечных вибраций вала (на этой частоте вал начинает резонировать и разрушаться). Парсонс и де Лаваль независимо друг от друга обнаружили, что на скоростях, больших критической, вал вращается устойчиво. Несмотря на это, небольшой разбаланс все-таки приводил к отклонению вала от положения равновесия. Поэтому для того, чтобы избежать повреждения вала, его следовало устанавливать в подшипниках, которые допускали бы его небольшие боковые смещения.

Вначале Парсонс попытался использовать обычный подшипник, закрепив его на пружинах, но обнаружил, что такая конструкция только усиливает вибрацию. В конце концов он придумал подшипник, состоящий из набора колец. Парсонс использовал кольца двух размеров: одни плотно прилегали к внутреннему вкладышу подшипника (через который проходил вал), но не касались корпуса; они чередовались с другими кольцами, которые плотно прилегали к корпусу, не касаясь вкладыша. Вся система колец в продольном направлении сжималась пружиной. Такая конструкция допускала небольшие боковые смещения вала и в то же время подавляла вибрации за счет трения между шайбами двух типов.


Подшипник на валу допускал небольшие боковые смещения вала, но гасил вибрации. Он состоял из чередующихся колец: одни плотно охватывали вкладыш (внутри которого проходил вал), не касаясь корпуса турбины, другие плотно прижимались к корпусу, не касаясь вкладыша. Весь набор колец поджимался пружиной. Винтовой насос (слева) гнал масло (желтый цвет) в подшипник.

Эта конструкция успешно работала, и те, кто видел образец турбины, представленный на выставке изобретателей в Лондоне в 1885 г., отмечали, насколько ровным был ее ход по сравнению с другими паровыми машинами того времени. Последние так сотрясали фундамент, что вибрация ощущалась даже на значительном удалении от машины.


Турбогенератор Парсонса, построенный в 1884 г., стал первой паровой трубиной, получившей промышленное применение. Пар под высоким давлением поступал в турбину через прямоугольное отверстие, расположенное у середины вала. Здесь он разделялся и направлялся к противоположным концам вала, проходя через венцы лопаток. Расширяющийся пар вращал подвижные (рабочие) кольца, плотно сидящие на центральном валу. Между подвижными кольцами располагались венцы неподвижных лопаток, закрепленных на внутренней поверхности корпуса турбины. Неподвижные лопатки направляли пар на лопатки подвижных колес.
В межлопаточном пространстве каждого колеса пар расширялся. Принцип многоступенчатого расширения пара позволял Парсонсу в полной мере использовать энергию пара, находящегося под высоким давлением, и избежать большого числа оборотов. Вал вращал динамо-машину, или электрогенератор (справа).

В турбине Парсонса пар подводился через управляющий клапан к средней части вала. Здесь поток пара разделялся и шел по двум каналам: по одному пар поступал к левому концу вала, по другому — к правому, Объем пара в том и другом канале был одинаковым. Каждая струя проходила через венцы лопаток в турбине.

Одно из преимуществ, которое давало разделение потока, заключалось в том, что продольные (осевые) силы, возникающие за счет давления пара на лопатки турбины, в точности уравновешивались. Таким образом, отпадала необходимость в упорном (осевом) подшипнике. Описанная конструкция используется во многих современных паровых турбинах.

И все-таки первая многоступенчатая турбина Парсонса развивала большую скорость — 18000 об/мин. При таких оборотах центробежная сила, действующая на лопатки турбины, в 13 тыс. раз превышала силу тяжести. Для того чтобы уменьшить опасность разрушения вращающихся частей, Парсонс разработал очень простую конструкцию: каждый диск изготовлялся из цельного медного кольца; пазы, в которые входили лопатки, располагались по окружности диска и представляли собой щели, ориентированные под углом 45°. Подвижные диски насаживались на вал и фиксировались на его выступе. Неподвижные венцы состояли из двух полуколец, которые прикреплялись сверху и снизу к корпусу турбины. Увеличение объема пара при его поступенчатом расширении потребовало, чтобы длина лопаток по ходу пара последовательно трижды увеличивалась — от 5 до 7 мм. Кромки лопаток были скошены, чтобы улучшить характеристики струи.

Проблема снижения скорости вращения вала вызвала к жизни и другие изобретения. Скорости были настолько высоки, что решить эту проблему с помощью существовавших тогда передаточных механизмов (как, например, зубчатых) было нельзя. Невозможно было использовать и простой центробежный регулятор, нашедший применение на паровых машинах более ранних конструкций: шары регулятора были бы просто оторваны центробежной силой. Парсонс разработал совершенно новый тип регулятора. На валу турбины он поместил центробежный вентилятор, соединенный с системой трубок, в которых находился воздух. Вращающийся вентилятор отсасывал воздух из трубок, создавая в них разрежение. На это разрежение реагировала кожаная диафрагма, расположенная с другой стороны системы трубок и соединенная с управляющим клапаном, который контролировал подачу пара в турбину. Если скорость вращения турбины увеличивалась, разрежение воздуха в трубках росло и диафрагма выгибалась сильнее; в результате клапан, соединенный с диафрагмой, уменьшал подачу пара в турбину и ее вращение замедлялось.

Регулятор работал неплохо, но был не очень чувствительным. Турбина Парсонса приводила в движение динамо-машину (электрический генератор). В то время когда Парсонс построил свою турбину, одна лампа накаливания стоила столько же, сколько четверть тонны угля. Для того чтобы лампы не перегорали при резких изменениях электрического тока (что часто случалось, если использовались паровые машины), динамо-машина должна была обеспечивать постоянство напряжения с точностью 1-2%. Для этой цели Парсонс снабдил свою турбину специальным механизмом точной регулировки, реагировавшим непосредственно на изменение напряжения на динамо-машине.


Напряжение на обмотке динамо-машины пропорционально напряженности магнитного поля, создающегося у полюсов. Парсонс изготовил из мягкого железа коромысло и укрепил его над полюсами динамо-машины, прикрепив к нему пружину. Коромысло, преодолевая сопротивление пружины, стремилось повернуться по направлению магнитного поля; угол поворота зависел непосредственно от напряженности поля, которая в свою очередь была связана с напряжением на обмотках динамо-машины. Вместе с коромыслом поворачивалась медная задвижка. В зависимости от своего положения она в большей или меньшей степени прикрывала отверстие трубки, входящей в систему регулятора с центробежным вентилятором,

Если напряженность магнитного поля росла, задвижка начинала постепенно перекрывать отверстие трубки. Тем самым уменьшался доступ воздуха в систему регулятора и увеличивалось разрежение, создаваемое центробежным вентилятором. Кожаная диафрагма при этом выгибалась и управляющий клапан уменьшал подачу пара в турбину. Таким образом, скорость вращения турбины зависела от напряжения на обмотках динамо-машины. Механизм точной регулировки Парсонса был одним из первых сервомоторов — устройств с обратной связью, которые управляют расходом большого количества энергии, потребляя незначительную ее часть.


Пар под высоким давлением (темно-красный цвет) вводится через отверстие у средней точки вала и проходит через венцы лопаток, направляясь к обоим концам вала. Отработанный пар (светло-красный) поступает в две полости, соединенные выходным каналом в нижней части корпуса. Еще дальше от центра по оси вала располагаются две другие полости, соединенные каналом в верхней части корпуса; в них поддерживается частичный вакуум (голубой).

Муфты, плотно прижимающиеся к внутренней поверхности корпуса за счет перепада давлений между полостями с отработанным паром и с частичным вакуумом, не позволяют отработанному пару выйти наружу через зазоры у поверхности вращающегося вала. Смазка подается винтовым насосом (слева), который нагнетает масло (желтый) в подшипник на валу и к другим подшипникам. Центральных подшипников масло достигает по каналу внутри вала динамо-машины (в центре и справа). В регуляторе используется центробежный вентилятор (слева), который создает разрежение (голубой) в системе трубок. Кожаная мембрана соединенная с клапаном, который регулирует подачу пара в турбину, при разрежении в трубках притягивается к ним.

Механизм точной регулировки расположен наверху динамо-машины. Этот механизм изменяет приток воздуха в систему трубок в зависимости от напряжения на обмотках динамо-машины. Под действием разрежения, создаваемого в воздушных трубках, масло от подшипников поступает обратно в вертикальный резервуар (слева).

Центробежный вентилятор, занимающий главное место в регуляторе Парсонса, играл важную роль и в системе смазки. Высокая скорость вращения вала турбины требовала абсолютно надежной смазки. На конце вала Парсонс укрепил винтовую спираль, которая была погружена в резервуар с маслом и обеспечивала подачу смазки в подшипники на валу. По трубкам масло направлялось к дальнему концу вала, где находилась динамо-машина, а по каналу внутри вала динамо-машины масло подавалось к центральным подшипникам и охлаждало внутренние части динамо-машины. Под действием силы тяжести масло возвращалось к центральному узлу. Главный масляный резервуар соединялся вертикальной трубкой с системой воздушных трубок, расположенных непосредственно у вентилятора. Разрежение, создаваемое вентилятором, заставляло масло перетекать из центрального узла обратно в масляный резервуар, так что уровень масла оказывался достаточным для работы винтового насоса.

Еще одним изобретением Парсонса, также применяемым в современных турбинах, был способ, позволяющий устранить утечку пара через зазоры между валом и корпусом турбины. Всякая попытка сделать муфту, плотно прилегающую к валу, была бы неудачной, так как при критической скорости вращения во время набора оборотов в результате биений создавалось бы большое трение. Муфта, сконструированная Парсонсом, плотно облегала вал и в то же время допускала небольшие его смещения. По достижении рабочей скорости муфта действовала как надежный затвор, удерживающий отработанный пар внутри корпуса турбины.

Как только турбина достигала рабочих скоростей, муфта плотно прижималась к валу под действием разности давлений между выходным патрубком и камерой, где поддерживался частичный вакуум. Отработанный пар шел из двух полостей (по одной на каждом конце вала) через выходной канал в нижней части корпуса турбины. Две другие полости располагались дальше от средней точки вала, чем каждая из выходных полостей. Канал в верхней части корпуса соединял эти крайние полости. Внутри каждой из двух внутренних полостей Парсонс поместил муфту, плотно охватывающую вал. Для поддержания частичного вакуума в крайних полостях Парсонс применил паровой струйный насос. При небольшом числе оборотов турбины муфты свободно вращались вместе с валом. По достижении рабочей скорости возникал перепад давления между внутренними полостями (куда поступал отработанный пар из турбины) и крайними полостями (где поддерживался частичный вакуум). Под действием перепада давления муфты плотно прижимались к корпусу турбины и отделяли полости друг от друга.

В каких же условиях сформировался талант Парсонса, благодаря которому ему удалось преодолеть трудности на пути создания турбины? Парсонс был младшим сыном в семье, получившей во владение землю в Бирре, в графстве Оффали, в Ирландии. Его отец, третий граф Росс, был талантливым ученым. Он внес большой вклад в технологию отливки и шлифовки больших зеркал для телескопов. В 1845 г. в мастерской в своем поместье он построил зеркальный телескоп, который в течение нескольких десятилетий оставался самым большим телескопом в мире. С помощью этого телескопа Парсонс-старший открыл ряд спиральных туманностей. С 1849 по 1854 г. он был президентом Лондонского королевского общества. Будучи членом парламента, он, для того чтобы присутствовать на заседаниях, купил в Лондоне дом. Часть года здесь жила вся семья, устраивая приемы, на которые приглашались представители научных кругов.

Парсонсы не отдавали своих детей в школу. Их учителями были астрономы, которых граф приглашал для ночных наблюдений с помощью телескопов; в дневное время эти ученые обучали детей. Всячески поощрялись и занятия детей в домашних мастерских. Ремесло, к которому Чарлз приобщился с детства, сыграло исключительно важную роль в тот период, когда он строил свою турбину.

Чарлз поступил в Тринити-колледж в Дублине, а затем перешел в Сент-Джонс-колледж Кембриджского университета, который окончил в 1877 г. Математику он изучал под руководством Эдварда Е. Рута, который в ту пору занимался исследованием условий сохранения равномерного движения, в частности использования для этих целей различных механических регуляторов.

Вплоть до этого времени Парсонс вкушал плоды своего привилегированного воспитания. Поворот в его судьбе произошел, когда он стал учеником Джорджа Армстронга, известного фабриканта корабельных орудий, и начал работать на его Элсуикской фабрике в г. Ньюкасл-на-Тайне. Причины, которые побудили Парсонса принять такое решение, остались неизвестными: в то время дети из богатых семей редко избирали карьеру инженера.

Парсонс завоевал репутацию самого трудолюбивого ученика Армстронга. В период стажировки он получил разрешение работать на самой последней новинке — паровой машине с вращающимися цилиндрами — и между 1877 и 1882 гг. запатентовал несколько своих изобретений. Если изучить эти патенты, можно установить, что он использовал идею смазки под давлением десятилетием раньше А.Пэйна, который знаменит своими изобретениями в этой области. До Парсонса для смазки подшипников применялись капельницы, поэтому подшипники требовали постоянного контроля. Идея о принудительной смазке сыграла исключительную роль в создании высокоскоростных машин, в частности турбины

Мысль о создании турбины пришла Парсонсу, по-видимому, когда он еще был студентом. Лорд Рэлей передает слова одного из знакомых Парсонса по Кембриджу, которому будущий изобретатель показывал игрушечный бумажный двигатель: когда Парсонс дул на колеса игрушки, они вращались. Парсонс сказал, что скорость вращения у этой машины будет «в десять раз больше, чем у любой другой».

Первые настоящие опыты с турбинами Парсонс начал проводить, работая у Армстронга. С 1881 по 1883 г., т.е. сразу после стажировки, он в сотрудничестве с Джеймсом Килсоном работал над созданием торпеды, приводимой в движение газом. Армстронг в значительной мере был связан с производством морского оружия и, вероятно, поддерживал усилия по разработке нового вида движителя торпеды. Особенность этого движителя состояла в том, что сгорающее топливо создавало струю газа высокого давления. Струя ударялась в крыльчатку, заставляя ее вращаться. Крыльчатка в свою очередь приводила во вращение гребной винт торпеды.

В записных книжках Парсонса нет явных указаний на конструкцию крыльчатки, однако некоторое представление о ней можно получить, изучив небольшую лодку, сделанную Парсонсом из листовой меди. Лодка приводилась в движение трехлопастным винтом, находящимся под корпусом. Винт располагался внутри большого кольца с 44 спиральными прорезями. Газ, вырывавшийся струей, проходил по этим прорезям, и за счет усилия, создаваемого при отклонении потока, кольцо начинало вращаться. Вместе с ним вращался и винт, толкающий лодку вперед.

Итак, свои ранние опыты Парсонс проводил с газовыми, а не с паровыми турбинами. Работы над ними он прекратил в 1883 г., хотя в его патенте 1884 г. описан современный цикл работы газовой турбины. Впоследствии он дал этому объяснение.

«Опыты, проводимые много лет назад, — писал он, — и частично имевшие целью удостовериться в реальности газовой турбины, убедили меня в том, что с теми металлами, которые имелись в нашем распоряжении… было бы ошибкой использовать для приведения лопаток во вращение раскаленную струю газов — в чистом ли виде, или в смеси с водой или паром».

Это было прозорливое замечание: лишь спустя десять лет после смерит Парсонса появились металлы, которые были пригодны для изготовления газовых турбин.

В начале 1884 г. Парсонс стал младшим компаньоном в фирме Clarke Chapman and Company. Обосновавшись в Гейтсхеде, он приступил к проектированию паровой турбины. Его записи опытов по созданию торпеды, относящиеся к августу 1883 г., свидетельствуют о том, что в ту пору он еще не пришел к мысли о необходимости довести скорость вращения лопаток до скорости газовой струи. Не занимала его внимания и проблема создания сопла с большим значением отношения давлений на входе и выходе. Но уже в апреле 1884 г. он оформил два предварительных патента, а в октябре и ноябре того же года дал полное описание изобретения.

Для Парсонса это был невероятно продуктивный период. Ему приходилось не только экспериментировать с высокоскоростными валами и другими деталями турбины, но и думать о возможных путях использования энергии его машины. Обладая скоростью вращения 18000 об/мин, она не могла быть применена для обычных целей. Парсонс решил создать и динамо-машину, работающую от турбины на высоких скоростях, которые доступны немногим из современных электрических машин. Впоследствии Парсонс часто повторял, что это изобретение так же важно, как и создание самой турбины. До сегодняшних дней основным применением паровой турбины остается приведение в движение электрических генераторов.

ПЕРВЫЕ паровые турбины были не особенно эффективны. До тех пор пока их выходная мощность не позволяла сравняться по экономичности с обычными паровыми машинами, их следовало сделать привлекательными для покупателей за счет других характеристик. Такими привлекательными чертами стали их небольшие размеры, стабильность электрического напряжения, надежность работы в отсутствие контроля и небольшие эксплуатационные расходы. Всеми этими особенностями и обладала первая турбина.

В ноябре 1884 г., когда был создан первый образец турбины, достопочтенному Чарлзу А. Парсонсу было всего 30 лет. Инженерный гений и чутье на потребности рынка сами по себе были недостаточным условием для того, чтобы его детище благополучно вступило в жизнь. На ряде этапов Парсонс должен был вкладывать свои собственные средства, для того чтобы проделанная работа не пропала даром. Во время судебного разбирательства в 1898 г., затеянного с целью продлить срок действия некоторых его патентов, было установлено, что на создание турбины Парсонс израсходовал личных денег в сумме 1107 фунтов 13 шиллингов и 10 пенсов.


«Turbinia» — первый пароход с турбинным двигателем. Он был спущен на воду в 1894 г.
Пароход развивал рекордную скорость — до 35 узлов.
Впоследствии турбины стали использоваться и на крупных судах.