Эти существа были соседями динозавров, а теперь живут рядом с нами. Великое Пермское вымирание видов: возможные причины Величайшая экологическая катастрофа

МОСКВА, 29 июн - РИА Новости. Швейцарские палеонтологи выяснили, что примерно 250 миллионов лет назад, через миллион лет после знаменитого Пермского вымирания животных и растений, произошло еще одно схожее событие, уничтожившее большое количество растений, говорится в статье, опубликованной в журнале Scientific Reports.

"Мы пока не знаем, с чем была связана эта катастрофа. С другой стороны, косвенные индикаторы показывают, что существует связь между этим событием и мощнейшими извержениями вулканов в той части Земли в начале Триасового периода, которая в последствии стала современной Сибирью", — заявил Хуго Бухер (Hugo Bucher) из университета Цюриха (Швейцария).

Как рассказывает Бухер, обнаруженные ими следы массового вымирания растений и намеки на существование еще одного такого события в начале Триасового периода позволяют назвать его своеобразной "эрой массовых вымираний", а также объясняют то, почему флора и фауна Земли потратила необычно долгое время, несколько миллионов лет, на восстановление после "великого" Пермского вымирания.

Ученые пришли к такому выводу, изучая 400-метровый слой осадочных пород на территории современной Гренландии, сформировавшийся во время Пермского вымирания, которое произошло 252 миллиона лет назад, и в первые эпохи Триасового периода.

Бухер и его коллеги пытались раскрыть одну из самых странных черт Пермского вымирания - то, почему видовой состав растений оставался крайне скудным в первые несколько миллионов лет после его завершения, несмотря на освобождение экологических ниш и почти полное отсутствие привычных "естественных врагов" - травоядных животных.

Всплытие мантии в Сибири стало причиной Пермского вымирания животных Смесь из пород океанической коры и материала мантии, которая "всплыла" к поверхности Земли в районе Восточной Сибири, оказалась "виновата" в выделении огромных количеств углекислого газа и других летучих веществ, что привело к массовому вымиранию живых существ 250 миллионов лет назад.

Ответ на эту загадку ученые искали в двух вещах, которые можно было "прочитать" в окаменелостях и породах Триаса - то, как менялась концентрация "тяжелого" углерода-13, и по структуре и размерам зерен пыльцы и спор растений. Доли изотопов углерода, как объясняют исследователи, являются прямым индикатором того, как много растений росло на Земле в то время, а изменения в "наборах" пыльцы и спор могут указывать на резкие или плавные изменения в климате и видовом составе растений.

Оба этих индикатора раскрыли неожиданную вещь. Оказалось, что примерно через 500 тысяч - миллион лет после Пермского вымирания произошла еще одна катастрофа. Она фактически уничтожила почти все растения, росшие в то время на Гренландии, и заменила их на совершенно новые виды флоры всего за тысячу лет, мгновение по геологическим и эволюционным меркам. Эта "смена караула" сопровождалась резким падением в объемах биомассы, что свидетельствует об еще одном массовом вымирании, о котором мы раньше не имели понятия.

Данное событие, как показали аналогичные исследования, которые команда Бухера провела в Австралии и на территории Пакистана, затронуло не только Гренландию, находившуюся в то время ближе к экватору, но и всю Землю.

Смертельная жара в Триасе "выжгла" фауну после Пермского вымирания Ученые выделяют в истории жизни на Земле пять крупнейших массовых вымираний видов. Наиболее значительным считается великое Пермское вымирание, когда исчезло более 95% всех живых существ, населявших планету. По современным представлениям, на восстановление жизни в морях и на суше ушло от 5 до 30 миллионов лет.

Причиной этого вымирания, как считает Бухер, был тот же процесс, который вызвал Пермское вымирание - массовое излияние магмы в Восточной Сибири и насыщение атмосферы вулканическими газами. По всей видимости, они вызвали глобальное потепление и перевели Землю в "парниковый режим", так как до этого нового вымирания господствовал холодный и засушливый климат Пермского периода, а после него - влажный и жаркий климат мезозойской эры.

То, что на границе между Пермью и Триасом произошло не одно, а серия из как минимум двух или более вымираний, хорошо укладывается и объясняет не только замедленное восстановление флоры, но и странности в неодновременном вымирании ряда групп морских моллюсков и прочих обитателей моря. Таким образом, вся история эволюции жизни на рубеже Пермского и Триасового периодов нуждается в пересмотре, заключают авторы статьи.

Причиной массового вымирания живых существ 250 млн лет назад стало похолодание климата. К такому выводу пришли специалисты из Женевского и Цюрихского университетов на основе исследования древних морских отложений, проводившегося в бассейне реки Наньпаньзян в южном Китае.

Речь идет о так называемом «великом вымирании» на границе пермского и триасового геологических периодов - самом крупном в истории нашей планеты. Считается, что тогда исчезли более 95% всех морских видов и более 70% наземных видов позвоночных. Этот феномен пока не нашел однозначного объяснения в науке. Вместе с тем, как отмечается в сообщении, размещенном на сайте Женевского университета, выводы группы исследователей под руководством Урса Шальтеггера и Хуго Бухера «полностью ставят под вопрос научные теории, касающиеся этого феномена, основанные на увеличении СО2 в атмосфере, и прокладывают путь к новому видению истории климата Земли».

Работая над определением геологического возраста минералов, содержащихся в вулканическом пепле, с целью установления хронологии изменения климата, ученые заинтересовались процессами, происходившими 250 млн лет назад. Они обнаружили «пробел» в отложениях, соответствующий понижению уровня моря. «Единственное объяснение состоит в том, что воду сковал лед, и ледникового периода длиной в 80 тысяч лет было достаточно для гибели значительной части морских обитателей», - констатирует Женевский университет.

Специалисты объясняют снижение температуры на Земле в этот период проникновением в стратосферу большого количества двуоокиси серы, что привело к уменьшению солнечного тепла, достигающего поверхности планеты. «Таким образом, у нас есть доказательство, что виды исчезли во время ледникового периода, вызванного первой вулканической активностью в Сибирских траппах», - пояснил Урс Шальтеггер. За этим периодом последовало формирование известняка под воздействием бактерий, что означало возвращение к более умеренным температурам.

Что же касается периода интенсивного потепления климата, которое прежде считали причиной массового исчезновения морских видов, то оно, как установили швейцарские ученые, наступило только через 500 тысяч лет после «великого вымирания». «Это исследование показывает, что потепление климата - не единственное объяснение глобальных экологических катастроф в прошлом на Земле: очень важно продолжать изучать морские осадочные породы, чтобы лучше понять систему климата планеты», - отмечает Женевский университет.

В ходе изучения осадочных пород в бассейне реки Наньпаньзян швейцарские специалисты использовали уран-свинцовый метод датирования. Таким образом, о возрасте древних отложений можно было судить с погрешностью до 35 тысяч лет, что «само по себе довольно точно для периода в 250 млн лет», констатировал Урс Шальтеггер.

В истории Земли зафиксированы пять крупнейших вымираний — то есть явлений исчезновений всех представителей определенного биологического вида. Последний случай крупного вымирания произошел 65,5 млн лет назад и ознаменовался гибелью динозавров. Самое массовое же вымирание произошло около 250 млн лет назад и привело к исчезновению порядка 95% живых существ. Это явление получило название «массовое пермское вымирание» и стало завершением последнего периода палеозоя — Пермского геологического периода (который, в отличие от многих других геологических периодов, выделенных в Британии, был выделен в 1841 году в районе российского города Пермь британским геологом Родериком Мурчисоном). После Перми в истории Земли начался Триас — первый период мезозоя.

На протяжении последних ста с лишним лет учеными назывались разные причины массового пермского вымирания.

Например, постепенные изменения условий окружающей среды в виде изменений химического состава воды в мировом океане и в атмосфере, изменение океанских течений и т. п.

Но все же больше свидетельств получило предположение о том, что массовое пермское вымирание имеет катастрофический характер и является следствием или падения крупного метеорита, или усиления вулканической деятельности.

Последняя версия получила поддержку несколько лет назад, когда учеными были представлены результаты исследования осадочных пород, свидетельствующие о высокой вулканической активности в течение нескольких миллионов лет в той области, где сейчас находится Сибирь. Новые подобные данные представлены группой канадских ученых во главе со Стефаном Грэсби и опубликованы в журнале Nature Geoscience .

В соответствующих по возрасту геологических слоях канадские геологи обнаружили отложения пепла — ценосферы. Они представляют собой микроскопические полые частицы зольной пыли, которая образуется при сжигании угля. Такие же частицы появляются на Земле как результат работы угольных электростанций.

250 млн лет назад эти частицы могли сформироваться, когда в ходе активности сибирских траппов расплавленное вещество, вырываясь наружу, проходило через залежи угля.

Сибирские траппы — это одна из самых крупных трапповых провинций мира. Траппами называют особый тип континентального магматизма, для которого характерен огромный объём излияния базальта за геологически короткое время (миллионы лет) на больших территориях, название произошло от шведского слова trappa (лестница), так как в районах траппового магматизма возникает характерный рельеф: базальтовый слой эродируется плохо, а осадочные породы разрушаются легко. Траппы развиты во всей Восточно-Сибирской платформе, в Хатангском прогибе, в Минусинской котловине, зона магматизма простирается и на шельфе Евразии, на дне Карского моря. В районе их развития расположены реки Нижняя Тунгуска, Подкаменная Тунгуска, Тюнг и др. Сибирские траппы слагают плато Путорана. Центр траппового магматизма располагался в районе Норильска.

В результате извержения сибирских траппов, следы которого найдены учеными, в атмосфере Земли оказалось огромное количество ядовитых веществ (например, мышьяк и хром), что вызвало «парниковый эффект» и уменьшение количества кислорода в атмосфере. В Мировом океане оказался пепел, в результате чего произошло изменение состава морской воды.

Неудивительно, что после такой катастрофы на Земле осталась существовать только незначительная часть живых организмов.

По словам учёных, им удалось выделить три чётких слоя ценосфер на временном отрезке длительностью в 500-750 тысяч лет, причем последний из них образовался непосредственно перед массовым пермским вымиранием.

«Доказательства достаточно убедительны», — считает Грегори Реталлек, геолог из Университета штата Орегон. С ним согласен геофизик Норман Слип из Стэнфордского университета, который назвал результаты канадской группы «чрезвычайно крупным открытием».

В результате массового пермского вымирания с лица Земли исчезло множество видов, ушли в прошлое целые отряды и даже классы. Вымирание старых форм открыло дорогу многим животным, долгое время остававшимся в тени: начало и середина следующего за Пермью триасового периода ознаменовались становлением архозавров, от которых произошли динозавры и крокодилы, а впоследствии птицы. Кроме того, именно в триасе появляются первые млекопитающие.

В глобальной сети появился интересный сервис (dinosaurpictures.org), позволяющий посмотреть, как выглядела наша планета 100, 200, … 600 миллионов лет назад. Листинг событий, происходящих в истории нашей планеты приведён ниже.

Наше время
. На Земле практически не осталось мест, не испытывающих деятельность человека.


20 миллионов лет назад
Неогеновый период. Млекопитающие и птицы начинают походить на современные виды. В Африке появились первые гоминиды.



35 миллионов лет назад
Средний ярус Плейстоцена в эпоху Чертвертичного периода. В ходе эволюции из небольших и простых форм млекопитающих появились большее сложные и разнообразные виды. Развиваются приматы, китообразные и другие группы живых организмов. Земля остывает, получают распространения лиственные породы деревьев. Первые виды травянистых растений эволюционируют.



50 миллионов лет назад
Начало третичного периода. После того, как астероид уничтожил динозавров, выжившие птицы, млекопитающие и рептилии, эволюционируя, занимают освободившиеся ниши. От наземных млекопитающих ответвляется группа предков китообразных, которая начинает осваивать просторы океанов.

65 миллионов лет назад
Поздний мел. Массовое исчезновение динозавров, морских и летающих рептилий, а также множества морских беспозвоночных и других видов. Учёные придерживаются мнения, что причиной вымирания стало падения астероида в районе настоящего полуострова Юкатан (Мексика).

90 миллионов лет назад
Меловой период. По Земле продолжают разгуливать Трицератопсы и Пахицефалозавры. Первые виды млекопитающих, птиц и насекомых продолжают эволюционировать.


105 миллионов лет назад
Меловой период. По Земле разгуливают Трицератопсы и Пахицефалозавры. Появляются первые виды млекопитающих, птиц и насекомых.


120 миллионов лет назад
Ранний Мел. На земле тепло и влажно, ледовые полярные шапки отсутствуют. В мире доминируют рептилии, первые мелкие млекопитающие ведут полускрытый образ жизни. Цветковые растения эволюционируют и распространяются по всей Земле.



150 миллионов лет назад
Конец Юрского периода. Появились первые ящерицы, эволюционируют примитивные плацентарные млекопитающие. Динозавры доминируют на всей суше. Мировой океан населяют морские рептилии. Птерозавры становятся доминирующими позвоночными в воздухе.



170 миллионов лет назад
Юрский период. Динозавры процветают. Эволюционируют первые млекопитающие и птицы. Жизнь океана отличается разнообразием. Климат на планете очень тёплый и влажный.


200 миллионов лет назад
Поздний Триас. В результате массового вымирания исчезает 76% всех видов живых организмов. Численность популяций выживших видов также сильно снижается. Виды рыб, крокодилов, примитивных млекопитающих, а также птерозавров пострадали в меньшей степени. Появляются первые настоящие динозавры.



220 миллионов лет назад
Средний Триас. Земля восстанавливается после Пермско-Триасового вымирания. Начинают появляться мелкие динозавры. Вместе с первыми летающими беспозвоночными появляются Терапсиды и Архозавры.


240 миллионов лет назад
Ранний Триас. Из-за гибели большого числа видов наземных растений отмечается низкое содержание кислорода в атмосфере планеты. Многие виды кораллов исчезли, пройдёт много миллионов лет прежде чем над поверхностью Земли начнут вздыматься коралловые рифы. Небольшие по размерам предки динозавров, птиц и млекопитающих выживают.


260 миллионов лет назад
Поздняя Пермь. Самое массовое вымирание в истории планеты. Около 90% всех видов живых организмов исчезает с лица Земли. Исчезновение большинства видов растений приводит к голодной смерти большого количества видов травоядных рептилий, а затем и хищных. Насекомые лишаются среды обитания.



280 миллионов лет назад
Пермский период. Массивы суши сливаются вместе и формируют суперконтинет Пангею. Климатические условия ухудшаются: начинают расти полярные шапки и пустыни. Площадь пригодная для произрастания растений резко снижается. Несмотря на это четвероногие рептилии и и амфибии дивергируют. Океаны изобилуют различными видами рыб и беспозвоночных.


300 миллионов лет назад
Поздний Карбон. У растений появляется развитая корневая система, что позволяет им успешно заселять труднодоступные участки суши. Площадь поверхности Земли, занятая растительностью увеличивается. Содержание кислорода в атмосфере планеты также увеличивается. Жизнь начинает активно развиваться под пологом древней растительности. Эволюционирую первые рептилии. Появляется множество разнообразных гигантских насекомых.

340 миллионов лет назад
Карбон (Каменноугольный период). На Земле происходит массовое вымирание морских организмов. У растений появляется более совершенная корневая система, которая позволяет более успешно захватывать новые участки суши. Концентрация кислорода в атмосфере планеты увеличивается. Первые рептилии эволюционируют.

370 миллионов лет назад
Поздний Девон. По мере развития растений, жизнь на суше усложняется. Появляется большое количество видов насекомых. У рыб появляются крепкие плавники, которые в итоге развиваются в конечности. Первые позвоночные выползают на сушу. Океаны изобилуют кораллами, различными видами рыб, включая акул, а также морскими скорпионами и головоногими моллюсками. Начинают появляться первые признаки массового вымирания морских живых организмов.


400 миллионов лет назад
Девон. Растительная жизнь на суше усложняется, ускоряя эволюцию наземных животных организмов. Насекомые дивергируют. Видовое разнообразие Мирового океана увеличивается.



430 миллионов лет назад
Силур. Массовое вымирание стирает с лица планеты половину видового разнообразия морских беспозвоночных. Первые растения начинают осваивать сушу и заселять прибрежную полосу. У растений начинает развиваться проводящая система, которая ускоряет транспорт воды и питательных веществ к тканям. Морская жизнь становится более разнообразной и многочисленной. Некоторые организмы покидают рифы и обосновываются на суше.


450 миллионов лет назад
Поздний Ордовик. Моря изобилуют жизнью, появляются коралловые рифы. Водоросли по-прежнему являются единственными многоклеточными растениями. Сложная жизнь на суше отсутствует. Появляются первые позвоночные, включая бесчелюстных рыб. Появляются первые предвестники массового вымирания морской фауны.


470 миллионов лет назад
Ордовик. Морская жизнь становится более разнообразной, появляются кораллы. Морские водоросли являются единственными многоклеточными растительными организмами. Появляются простейшие позвоночные.



500 миллионов лет назад
Поздний Кембрий. Океан просто кишит жизнью. Этот период бурного эволюционного развития множества форм морских организмов получил название «Кембрийский взрыв».


540 миллионов лет назад
Ранний Кембрий. Массовое вымирание имеет место быть. В ходе эволюционного развития у морских организмов появляются раковины и экзоскелет. Ископаемые останки свидетельствуют о начале «Кембрийского взрыва».

Палеонтологи из США и Австралии на основе статистического анализа 1176 палеонтологических коллекций пришли к выводу, что массовое вымирание на рубеже палеозойской и мезозойской эр привело к радикальному изменению структуры морских сообществ. До этого события в морях преобладали сообщества с простой структурой, слабыми экологическими связями между видами, низким видовым разнообразием и доминированием неподвижных фильтраторов. Великое вымирание уничтожило эти древние сообщества. Когда биота восстановилась после кризиса, новые сообщества оказались более сложными и разнообразными, а экологические связи между видами стали более тесными. В обновленных сообществах стали преобладать подвижные животные.

Палеонтологическая летопись позволяет с большой точностью и детальностью восстанавливать эволюционную историю многих групп животных — особенно тех, у кого есть твердый скелет. Значительно сложнее по палеонтологическим данным судить об эволюции экосистем и биосферы в целом.

Если брать «сырые» палеонтологические данные, то они, казалось бы, однозначно говорят о том, что в течение последних 540 миллионов лет разнообразие животного мира в целом росло, а экосистемы становились сложнее, разнообразнее и устойчивее (последние 540 млн лет — это фанерозойский эон, для которого летопись наиболее полна, так как именно 540 миллионов лет назад появились и быстро размножились животные со скелетом).

Этот рост не был равномерным: он происходил с большим ускорением, а более детальный анализ данных показывает, что ускорение роста происходило скачкообразно. В эволюции фанерозойской морской биоты отчетливо выделяются три переломных момента: 1) великая «радиация» в начале ордовика (460-490 млн лет назад), когда происходило массовое появление классов и отрядов животных; 2) величайшее из всех массовых вымираний, произошедшее на рубеже палеозоя и мезозоя (251 млн лет назад); 3) второе по масштабу массовое вымирание на границе мезозоя и кайнозоя (65 млн лет назад). По нашим данным, после каждого из этих кризисов скачкообразно росла средняя продолжительность существования вновь появляющихся родов морских животных (см. А. В. Марков. О механизмах роста таксономического разнообразия морской биоты в фанерозое // Палеонтологический журнал . 2002. № 2. С. 3-13).

Суммарное биоразнообразие складывается из трех компонентов: альфа-разнообразие (среднее число видов в одном сообществе), бета-разнообразие (разнообразие типов сообществ в пределах одной биогеографической области), гамма-разнообразие (разнообразие биогеографических областей). Альфа-разнообразие является также простейшей мерой сложности, продвинутости и, если угодно, совершенства экосистем.

Из-за неполноты летописи проследить динамику альфа-разнообразия гораздо труднее, чем динамику суммарного биоразнообразия. По имеющимся оценкам, полученным еще в 70-80-е годы (и с тех пор эти оценки не стали точнее, несмотря на немалые усилия исследователей), среднее число видов в сообществе скачкообразно возрастало дважды: в начале ордовика и на рубеже мезозоя и кайнозоя, то есть на первом и третьем из трех перечисленных критических рубежей.

Менялся также и качественный состав морских сообществ. В начале фанерозоя преобладали неподвижные, прикрепленные организмы — фильтраторы, такие как морские лилии , брахиоподы , мшанки . Хищных, активно плавающих и ползающих, а также роющих форм было сравнительно мало. В дальнейшем от кризиса к кризису ситуация менялась, причем тоже скачкообразно: становилось больше подвижных форм, в том числе роющих, росло относительное разнообразие хищников. Виды вымирали всё реже, а это значит, что сообщества и отдельные виды становились более устойчивыми ко всевозможным переменам среды.

Эти факты, казалось бы, ясно говорят о том, что в течение фанерозоя морские сообщества становились разнообразнее, сложнее, совершеннее и устойчивее. Однако в последние годы многие палеонтологи усомнились в достоверности этой картины. Дело в том, что неполнота летописи, как выяснилось, по целому ряду причин сильно растет с возрастом. Например, древние осадочные породы чаще оказываются литифицированными, то есть превратившимися в сплошной каменный монолит, по сравнению с молодыми породами, сохраняющими рыхлость и сыпучесть. Из литифицированных пород гораздо труднее добывать ископаемые остатки животных, особенно мелких. Не это ли является причиной того, что палеозойские палеонтологические коллекции оказываются беднее и однообразнее мезозойских и кайнозойских? Может быть, и весь наблюдаемый рост биоразнообразия в течение фанерозоя является артефактом, а в действительности нынешний уровень биоразнообразия был достигнут еще в самом начале фанерозоя и с тех пор не менялся?

Кроме литифицированности есть и другие возможные источники систематических ошибок, которые, в принципе, могут создавать иллюзию роста разнообразия в течение фанерозоя. Это избирательное растворение минеральных скелетов определенного типа (арагонитовых) в древних породах, а также то обстоятельство, что молодых осадочных пород в целом сохранилось больше, чем древних. Есть, однако, и противоположные тенденции. Так, наиболее изученные в палеонтологическом отношении регионы (Европа, Северная Америка) в палеозое находились в экваториальной области, а затем сместились в умеренные широты. Разнообразие на экваторе всегда выше, чем в умеренном поясе, поэтому данная тенденция по идее должна не преувеличивать, а преуменьшать наблюдаемый рост разнообразия в течение фанерозоя.

Все эти проблемы встали перед палеонтологами в последние годы в связи с созданием большой международной базы данных по палеонтологическим коллекциям (The Paleobiology Database), и на сегодняшний день ситуация представляется весьма запутанной. Специалисты разделились на два лагеря: одни считают, что наблюдаемой картине доверять вообще нельзя, другие доказывают, что все-таки можно, поскольку выявленные источники ошибок отчасти компенсируют друг друга, а отчасти — не столь существенны, как утверждают оппоненты.

Сам я во втором лагере, и поэтому появление в последнем номере журнала Science статьи с новыми доказательствами «нашей» правоты не могло меня не порадовать.

Питер Вагнер, Мэттью Косник и Скотт Лидгард проанализировали данные по 1176 коллекциям из The Paleobiology Database , для которых в базе данных есть сведения о численности каждого вида. Согласно имеющимся экологическим теориям, о структуре сообщества можно судить по характеру количественного распределения видовых обилий (РВО). Самый простой способ — подсчитать равномерность этого распределения. Для развитых, устойчивых сообществ характерно более равномерное РВО. Это значит, что численности разных видов, входящих в сообщество, не очень сильно отличаются друг от друга. Для примитивных, угнетенных, слаборазвитых сообществ характерно резкое преобладание одного или немногих видов, а все остальные виды присутствуют в ничтожном количестве. Считается, что это более тонкая и надежная мера сложности сообщества, чем простой подсчет видов в нём (то есть измерение альфа-разнообразия).

Ранее уже было показано (M. G. Powell, M. Kowalewski. 2002. Increase in evenness and alpha diversity through the Phanerozoic: Comparison of Early Paleozoic and Cenozoic marine fossil assemblages ; полный текст Pdf, 230 Кб // Geology . V. 30: P. 331-334), что в течение фанерозоя равномерность РВО в палеонтологических коллекциях растет. Это, казалось бы, говорит о прогрессивном развитии, совершенствовании структуры сообществ. Но это может быть и артефактом, следствием более плохой сохранности древних ископаемых. К тому же, высокая неравномерность РВО в древних коллекциях может свидетельствовать о том, что низкое альфа-разнообразие в палеозое — тоже артефакт. Дело в том, что если взять небольшую случайную выборку из «неравномерной» коллекции, то в выборку попадет меньше видов, чем в том случае, когда исходная коллекция является «равномерной».

Поэтому очень важно было найти какой-то более надежный критерий сложности сообществ, чем простое альфа-разнообразие (число видов) или равномерность РВО. Авторы показали, что таким критерием может служить соответствие РВО одному из нескольких стандартных математических распределений, каждое из которых имеет свою экологическую интерпретацию.

Согласно имеющимся экологическим теориям, если в примитивном сообществе отношения между видами просты (например, сводятся к одной лишь конкуренции за жизненное пространство, причем новые виды, проникающие в сообщество, не создают новых ниш и не способствуют расширению общего экологического пространства, занимаемого сообществом), то РВО должно соответствовать одной из нескольких простых математических моделей. Например, геометрическому распределению, при котором численности видов убывают в геометрической прогрессии от самого массового вида к самому редкому (допустим, самому массовому виду принадлежит 1/2 всех особей в сообществе, второму по массовости — 1/4, третьему — 1/8 и т. д.).

Если сообщество более совершенно, если между видами существуют сложные взаимоотношения, если новые виды расширяют занимаемое сообществом экологическое пространство и создают новые ниши, тем самым способствуя дальнейшему росту альфа-разнообразия — то в этом случае РВО должно соответствовать одной из более сложных моделей, например лог-нормальному распределению.

Вагнер, Косник и Лидгард показали, что в палеозое наблюдается примерно равное соотношение «простых» и «сложных» сообществ (то есть сообществ, у которых РВО соответствует простым и сложным моделям). Однако после великого вымирания на рубеже палеозоя и мезозоя ситуация резко меняется: с этого момента и вплоть до современности «сложных» сообществ становится в 2-3 раза больше, чем «простых».

Авторы убедительно показали, что это скачкообразное усложнение сообществ не является артефактом. Например, различия в степени литифицированности молодых и древних пород не могли повлиять на результат, потому что если рассматривать по отдельности коллекции, происходящие из литифицированных и нелитифицированных пород, то в обеих группах коллекций результат получается тот же самый. Аналогичным образом авторы проверили и другие возможные источники ошибок.

Таким образом, после великого вымирания на рубеже палеозоя и мезозоя произошла качественная перемена в структуре морских сообществ. В новых сообществах между видами сложились более сложные взаимоотношения, не сводящиеся к одной лишь конкуренции и включающие элементы сотрудничества. В обновленных морских экосистемах стали преобладать животные, способные расширять экологическое пространство сообщества, создавая ниши для других видов, и способные сами извлекать выгоду из тех изменений среды, которые осуществляются другими членами сообщества.

Это не могло не привести к росту среднего числа видов в сообществе, то есть альфа-разнообразия. Анализ РВО в древних сообществах подтвердил, что наблюдаемый в фанерозое рост альфа-разнообразия, скорее всего, не является артефактом, причем значительный рост этого показателя должен был произойти на рубеже палеозоя и мезозоя, хотя «сырые» данные по числу видов в коллекциях этого не показывают.

Это, в свою очередь, говорит о том, что и наблюдаемый рост общего суммарного биоразнообразия в течение фанерозоя (см. первый рисунок) тоже, скорее всего, не является артефактом.

Таким образом, в течение последних 540 миллионов лет прогрессивное развитие имело место не только на уровне отдельных групп морских животных, но и на уровне целых сообществ, и на уровне всей морской биоты в целом.