Что такое равенство. Числовые равенства, свойства числовых равенств

50. Свойства равенств, на которых основывается решение уравнений . Возьмем какое-нибудь уравнение, не очень сложное, например:

7x – 24 = 15 – 3x

x/2 – (x – 3)/3 – (x – 5)/6 = 1

Мы видим в каждом уравнении знак равенства: все то, что написано слева от знака равенства, называется левою или первою частью уравнения (в первом уравнении 7x – 24 является левою или первою частью, а во втором x/2 – (x – 3)/3 – (x – 5)/6 есть первая, или левая, часть); все то, что написано справа от знака равенства, называется правою или второю частью уравнения (15 – 3x есть правая часть первого уравнения, 1 является правою, или вторю, частью 2-го уравнения).

Каждая часть любого уравнения выражает собою некоторое число. Числа, выражаемые левою и правою частью уравнения, должны быть равны между собою. Нам ясно: если мы к каждому из этих чисел прибавим по одинаковому числу, либо вычтем из них по одинаковому числу, либо каждое из них умножим на одинаковое число, либо, наконец, разделим на одно и то же число, то результаты этих действий должны также быть равными между собою. Другими словами: если a = b, то a + c = b + c, a – c = b – c, ac = bc и a/c = b/c. По поводу деления следует, однако, иметь в виду, что в арифметике не имеется деления на нуль - мы не умеем, например, число 5 разделить на нуль. Поэтому в равенстве a/c = b/c число c не может быть равным нулю.

  1. К обеим частям уравнения можно прибавить или из них вычесть по одинаковому числу.
  2. Обе части уравнения можно умножить или разделить на одно и то же число, исключая случай, когда это число может оказаться равным нулю.

Пользуясь этими свойствами уравнения, мы можем найти удобный способ решать уравнения. Выясним этот случай на примерах.

Пример 1. Пусть надо решить уравнение

5x – 7 = 4x + 15.

Мы видим, что первая часть уравнения содержит два члена; один из них 5x, содержащий неизвестный множитель x, можно назвать неизвестным членом, а другой –7 – известным. Во второй части уравнения также 2 члена: неизвестный 4x и известный +15. Сделаем так, чтобы в левой части уравнения оказались только неизвестные члены (а известный член –7 уничтожился бы), а в правой части оказались бы только известные члены (а неизвестный член +4x уничтожился бы). Для этой цели прибавим к обеим частям уравнения одинаковые числа: 1) прибавим по +7 (чтобы уничтожился член –7) и 2) прибавим по –4x (чтобы уничтожился член +4x). Тогда получим:

5x – 7 + 7 – 4x = 4x + 15 + 7 – 4x

Сделав в каждой части уравнения приведение подобных членов, получим

Это равенство и является решением уравнения, так как оно указывает, что для x надо взять число 22.

Пример 2. Решить уравнение:

8x + 11 = 7 – 4x

Опять прибавим к обеим частям уравнения по –11 и по +4x, получим:

8x + 11 – 11 + 4x = 7 – 4x – 11 + 4x

Выполнив приведение подобных членов, получим:

Разделим теперь обе части уравнения на +12, получим:

x = –4/12 или x = –1/3

(первую часть уравнения 12x разделить на 12 – получим 12x/12 или просто x; вторую часть уравнения –4 разделить на +12 – получим –4/12 или –1/3).

Последнее равенство и является решением уравнения, так как оно указывает, что для x надо взять число –1/3.

Пример 3. Решить уравнением

x – 23 = 3 · (2x – 3)

Раскроем сначала скобки, получим:
x – 23 = 6x – 9

Прибавим к обеим частям уравнения по +23 и по –6x, – получим:

x – 23 + 23 – 6x = 6x – 9 + 23 – 6x.

Теперь, для того, чтобы впоследствии ускорить процесс решения уравнения, не будем сразу выполнять приведение всех подобных членов, а только заметим, что члены –23 и +23 в левой части уравнения взаимно уничтожаются, также члены +6x и –6x в первой части взаимно уничтожаются – получим:

x – 6x = –9 + 23.

Сравним это уравнение с начальным: вначале было уравнение:

x – 23 = 6x – 9

Теперь получили уравнение:

x – 6x = –9 + 23.

Мы видим, что в конце концов оказалось, что член –23, находившийся сначала в левой части уравнения, теперь как бы перешел в правую часть уравнения, причем у него переменился знак (в левой части начального уравнения был член –23, теперь его там нет, но зато в правой части уравнения имеется член + 23, которого там раньше не было). Так же точно в правой части уравнения был член +6x, теперь его там нет, но появился зато в левой части уравнения член –6x, которого раньше там не было. Рассматривая с этой точки зрения примеры 1 и 2, мы придем к общему заключению:

Можно любой член уравнения перенести из одной части в другую, меняя знак у этого члена (в дальнейших примерах мы будем этим пользоваться).

Итак, возвращаясь к нашему примеру, мы получили уравнение

x – 6x = –9 + 23

Разделим обе части уравнения на –5. Тогда получим:

[–5x: (–5) получим x] – это и есть решение нашего уравнения.

Пример 4. Решить уравнение:

Сделаем так, чтобы в уравнении не было дробей. Для этой цели найдем общего знаменателя для наших дробей – общим знаменателем служит число 24 – и умножим на него обе части нашего уравнения (можно, ведь, чтобы равенство не нарушалось, умножить на одно и то же число только обе части уравнения). В первой части 3 члена, причем каждый член является дробью - надо, следовательно, каждую дробь умножить на 24: вторая часть уравнения есть 0, а нуль умножить на 24 - получим нуль. Итак,

Мы видим, что каждая из наших трех дробей, благодаря тому, что она умножена на общее наименьшее кратное знаменателей этих дробей, сократится и сделается целым выражением, а именно получим:

(3x – 8) · 4 – (2x – 1) · 6 + (x – 7) · 3 = 0

Конечно, желательно все это выполнить в уме: надо вообразить, что, например, числитель первой дроби заключается в скобки и умножается на 24, после чего воображение поможет нам увидеть сокращение это дроби (на 6) и конечный результат, т. е. (3x – 8) · 4. Тоже имеет место и для остальных дробей. Раскроем теперь в полученном уравнении (в его левой части) скобки:

12x – 32 – 12x + 6 + 3x – 21 = 0

(обратим внимание, что здесь понадобилось двучлен 2x – 1 умножить на 6 и полученное произведение 12x – 6 вычесть из предыдущего, благодаря чему знаки членов этого произведения должны перемениться - выше и написано –12x + 6). Перенесем известные члены (т. е. –32, +6 и –21) из левой части уравнения в его правую часть, причем (как мы уже знаем) знаки этих членов должны перемениться - получим:

12x – 12x + 3x = 32 – 6 + 21.

Выполним приведение подобных членов:

(при навыке должно сразу выполняться и перенесение нужных членов из одной части уравнения в другую и приведение подобных членов), разделим, наконец, обе части уравнения на 3 - получим:

x = 15(2/3) - это и есть решение уравнения.

Пример 5. Решить уравнение:

5 – (3x + 1)/7 = x + (2x – 3)/5

Здесь две дроби, и их общий знаменатель равен 35. Умножим, чтобы освободить уравнение от дробей, обе части уравнения на общего знаменателя 35. В каждой части нашего уравнения 2 члена. При умножении каждой части на 35 должно каждый член умножить на 35 - получим:

Дроби сократятся - получим:

175 – (3x + 1) · 5 = 35x + (2x – 3) · 7

(конечно, можно было бы при навыке написать сразу это уравнение).

Выполним все действия:

175 – 15x – 5 = 35x + 14x – 21.

Перенесем все неизвестные члены из правой части (т. е. члены +35x и +14x) в левую, а все известные члены из левой части (т. е. члены +175 и –5) в правую - следует при этом не забывать у переносимых членов менять знак:

–15x – 35x – 14x = –21 – 175 + 5

(член –15x, как раньше был в левой части, так и теперь в ней остался - у него поэтому отнюдь не следует менять знака; аналогичное имеет место и для члена –21). Сделав приведение подобных членов, получим:

–64x = –191.

[Возможно сделать так, чтобы не было знака минус в обеих частях уравнения; для этого умножим обе части уравнения на (–1), получим 64x = 191, но этого можно и не делать.]
Разделим затем обе части уравнения на (–64), получим решение нашего уравнения

[Если умножили обе части уравнения на (–1) и получили уравнение 64x = 191, то теперь надо обе части уравнения разделить на 64.]

На основании того, что пришлось выполнять в примерах 4 и 5, мы можем установить: можно освободить уравнение от дробей - для этого надо найти общего знаменателя для всех дробей, входящих в уравнение (или наименьшее общее кратное знаменателей всех дробей) и на него умножить обе части уравнения - тогда дроби должны исчезнуть.

Пример 6. Решить уравнение:

Перенеся член 4x из правой части уравнения в левую, получим:

5x – 4x = 0 или x = 0.

Итак, решение найдено: для x надо взять число нуль. Если мы заменим в данном уравнении x нулем, получим 5 · 0 = 4 · 0 или 0 = 0, что указывает на выполнение требования, выражаемого данным уравнением: найти такое число для x, чтобы одночлен 5x оказался равен тому же самому числу, как и одночлен 4x.

Если кто-либо подметит с самого начала, что обе части уравнения 5x = 4x можно разделить на x и выполнит это деление, то получится явная несообразность 5 = 4! Причиною этого является то обстоятельство, что деление 5x/x в данном случае выполнить нельзя, так как, мы видели выше, вопрос, выражаемый нашим уравнением, требует, чтобы x = 0, а деление на нуль не выполнимо.

Заметим еще, что и умножение на нуль требует некоторой внимательности: умножая на нуль и два неравных числа, мы получим в результате этих умножений равные произведения, а именно - нули.

Если, например, мы имеем уравнение

x – 3 = 7 – x (его решение: x = 5)

и если кто-либо захочет к нему применить свойство «обе части уравнения можно умножить на одно и тоже число» и умножить обе части на x, то получит:

x 2 – 3x = 7x – x 2 .

После этого может обратить на себя внимание, что все члены уравнения содержат множителя x, из чего можно сделать заключение, что для решения этого уравнения можно взять число нуль, т. е. положить x = 0. И в самом деле, тогда получим:
0 2 – 3 · 0 = 7 · 0 – 0 2 или 0 = 0.

Однако, это решение x = 0, очевидно, не годится для данного уравнения x – 3 = 7 – x; заменяя в нем x нулем, получим явную несообразность: 3 = 7!

РАВЕНСТВА С КОЛИЧЕСТВАМИ.

После того, как ребёнок познакомится с карточками-количествами от 1 до 20, Вы можете добавить к первому этапу обучения второй этап - равенства с количествами.

Что такое равенство? Это арифметическое действие и его результат.

Вы начинаете этот этап обучения с темы «Сложение».

Сложение.

К показу двух наборов карточек-количеств Вы добавляете равенства на сложение.

Научить этой операции очень легко. Фактически Ваш ребёнок уже несколько недель готов к этому. Ведь каждый раз, когда Вы показываете ему новую карточку, он видит, что на ней появилась одна дополнительная точка.

Малыш ещё не знает, как это называется, но уже имеет представление о том, что это такое и как оно действует.

Материал для примеров на сложение у Вас уже есть на обратной стороне каждой карточки.

Технология показа равенств выглядит примерно так: Вы хотите дать ребенку равенство: 1 +2 = 3. Как его можно показать?

Перед началом урока положите себе на колени лицевой стороной вниз, одна на другую, три карточки. Поднимая верхнюю карточку с одной спицей-костяшкой, говорите «один», затем откладываете её, говорите «плюс», показываете карточку с двумя костяшками, произносите «два», откладываете её и после слова «будет», показываете карточку с тремя костяшками, произнося «три».

В день Вы проводите три занятия с равенствами и на каждом занятии показываете по три разных равенства. Итого, в день малыш видит девять разных равенств.

Ребёнок без всяких объяснений понимает, что означает слово «плюс», его значение он сам выводит из контекста. Производя действия, Вы тем самым быстрее всяких объяснений демонстрируете подлинный смысл сложения. Рассказывая о равенствах, всегда придерживайтесь одной и той же манеры изложения, употребляя одни и те же термины. Сказав «Один плюс два будет три», не говорите потом «К одному прибавить два будет три». Когда Вы учите ребёнка фактам, он сам делает выводы и постигает правила. Если Вы меняете термины, то ребёнок имеет все основания думать, что и правила тоже изменились.

Заранее готовьте все карточки, необходимые для того или иного равенства. Не думайте, что Ваш ребёнок будет спокойно сидеть и смотреть, как Вы будете рыться в стопке карточек, подбирая нужные. Он просто удерёт и будет прав, поскольку его время стоит не меньше Вашего.

Старайтесь не составлять равенства, которые бы имели нечто общее и позволяли бы ребёнку предугадывать их заранее (такие равенства можно будет использовать позже). Вот пример таких равенств:

Гораздо лучше использовать такие:

1 +2 = 3 5+6=11 4 + 8 = 12

Ребенок должен увидеть математическую суть, у него вырабатываются математические навыки и представления. Примерно через две недели малыш делает открытие, что такое сложение: ведь за это время Вы показали ему 126 разных равенств на сложение.

Проверка.

Проверка на данном этапе представляет собой решение примеров.

Чем отличается пример от равенства?
Равенство - это действие с показанным ребёнку результатом.

Пример - это действие, которое надо выполнить. В нашем случае, Вы показываете ребёнку два ответа, а он выбирает правильный, т.е. решает пример.

Пример Вы можете выложить после обычного занятия с тремя равенствами на сложение. Пример Вы показываете так же, как до этого демонстрировали равенство. То есть перекладываете карточки в руках, проговаривая каждую вслух. Например, «двадцать плюс десять будет тридцать или сорок пять?» и показываете малышу две карточки, одна из которых с правильным ответом.

Карточки с ответами нужно держать на одинаковом расстоянии от глаз малыша и не допускать никаких подсказывающих действий.

При правильном выборе ребёнка Вы бурно выражаете свой восторг, целуете и хвалите его.

При ошибочном выборе ответа, не высказывая огорчения, Вы пододвигаете к малышу карточку с правильным ответом и задаёте вопрос: «Будет тридцать, не правда ли?». На подобный вопрос ребёнок обычно отвечает утвердительно. Обязательно похвалите ребёнка за этот правильный ответ.

Ну а если из десяти примеров Ваш малыш верно решает хотя бы шесть, значит, Вам точно пора переходить к равенствам на вычитание!

Если Вы не считаете нужным проверять ребёнка (и правильно!), то через 10-14 дней всё равно переходите к равенствам на вычитание!

Рассмотрим -Вычитание.

Вы перестаёте заниматься сложением и полностью переключаетесь на вычитание. Проводите по три ежедневных урока с тремя различными равенствами в каждом.

Озвучиваете равенства на вычитание так: «Двенадцать минус семь будет пять».

При этом Вы одновременно продолжаете показывать карточки-количества (два набора, по пять карточек в каждом) тоже три раза в день. Итого, у Вас будет девять ежедневных очень коротких уроков. Так Вы работаете не более двух недель.

Проверка

Проверка так же, как и в случае со сложением, может представлять собой решение примеров с выбором одного ответа из двух.

Рассмотрим-Умножение.

Умножение - это не что иное, как многократное сложение, так что это действие не станет большим открытием для Вашего ребёнка. Поскольку Вы продолжаете изучение карточек- количеств (два набора по пять карточек в каждом), у Вас есть возможность составления равенств на умножение.

Озвучиваете равенства на умножение так: «Два умножить на три будет шесть».

Ребёнок поймет слово «умножить» так же быстро, как он понял до этого слова «плюс» и «минус».

Вы по-прежнему проводите в день по три урока, в каждом из которых - по три разных равенства на умножение. Такая работа продолжается не более двух недель.

Продолжайте избегать предсказуемых равенств. Например таких, как:

Необходимо постоянно держать своего ребёнка в состоянии удивления и ожидания чего-то нового. Главным для него должен стать вопрос: «Что дальше?»- и на каждом занятии он должен получать на него новый ответ.

Проверка

Решение примеров Вы проводите так же, как в теме «Сложение» и «Вычитание». Если малышу понравились игры-проверя-лочки с карточками-количествами, Вы можете продолжать играть в них, повторяя таким образом новые, большие количества.

Придерживаясь предложенной нами схемы, Вы к этому времени уже можете завершить первый этап обучения математике - изучите количества в пределах 100. Теперь настало время познакомиться с карточкой, которая больше всего нравится детям.

Рассмотрим-Понятие нуля.

Говорят, что математики уже пятьсот лет изучают идею нуля. Правда это или нет, но дети, едва познав идею количества, тут же понимают и смысл его полного отсутствия. Они просто обожают ноль, и Ваше путешествие в мир чисел будет неполным, если Вы не покажете малышу карточку, на которой вообще не будет никаких точек (т.е. это будет абсолютно пустая карточка).

Чтобы знакомство малыша с нулём прошло весело и интересно, можно сопроводить показ карточки загадкой:

Дома - семеро бельчат, На тарелке - семь опят. Все грибочки съели белки. Что осталось на тарелке?

Произнося последнюю фразу, показываем карточку «ноль».

Вы будете использовать её практически каждый день. Она пригодится Вам для операций сложения, вычитания и умножения.

Работать с карточкой «нуль» Вы можете одну неделю. Эту тему ребёнок осваивает быстро. Как и прежде, в течение дня, Вы проводите три занятия. На каждом занятии Вы показываете малышу по три различных равенства на сложение, вычитание и умножение с нулём. Итого у Вас получится девять равенств в день.

Проверка

Решение примеров с нулём проходит по знакомой Вам схеме.

Рассмотрим -Деление.

Когда Вы прошли все карточки-количества от 0 до 100, у Вас есть весь необходимый материал для примеров на деление с количествами.

Технология показа равенств данной темы прежняя. Каждый день Вы проводите три занятия. На каждом занятии Вы показываете малышу по три разных равенства. Хорошо, если прохождение этого материала не будет превышать двух недель.

Проверка

Проверка представляет собой решение примеров с выбором одного ответа из двух.

Когда Вы прошли все количества и знакомы с четырьмя правилами арифметики, то можете всячески разнообразить и усложнить свои занятия. Для начала покажите равенства, где ис- пользуется одно арифметическое действие: только сложение, вычитание, умножение или деление.

Затем - равенства, где сочетаются сложение и вычитание или умножение и деление:

20 + 8-10=18 9-2 + 26 = 33 47+11-50 = 8

Чтобы не запутаться в карточках, Вы можете сменить способ проведения занятий. Теперь не обязательно показывать каждую карточку спиц- костяшек, можно показывать только ответ, а сами действия лишь проговаривать. В результате Ваши занятия станут короче. Вы просто говорите ребёнку: «Двадцать два разделить на одиннадцать, разделить на два будет один», - и показываете ему карточку «один».

В этой теме можно использовать равенства, между которыми есть какая-либо закономерность.

Например:

2*2*3= 12 2*2*6=24 2*2*8=32

При сочетании в равенстве четырёх арифметических действий, помните, что умножение и деление должны быть вынесены в начало равенства:

Не бойтесь демонстрировать равенства, которых больше ста, например,

промежуточный результат в

42 * 3 - 36 = 90,

где промежуточный результат равен 126 (42 * 3 = 126)

Ваш малыш отлично с ними справится!

Проверка представляет собой решение примеров с выбором одного ответа из двух. Вы можете продемонстрировать пример, показав все карточки равенства и две карточки для выбора ответа или просто проговорить всё равенство, показав малышу лишь две карточки для ответа.

Помните! Чем дольше Вы занимаетесь, тем быстрее нужно вводить новые темы. Как только Вы заметили первые признаки невнимания ребёнка или скуки - переходите к новой теме. Спустя время Вы можете вернуться к прежней теме (но для знакомства с ещё не показанными равенствами).

Последовательности

Последовательности - это те же самые равенства. Опыт работы родителей с этой темой показал, что последовательности детям очень интересны.

Последовательности на плюс - это возрастающие последовательности. Последовательности на минус - убывающие.

Чем разнообразнее будут последовательности, тем они интереснее малышу.

Приведём несколько примеров последовательностей:

3,6,9,12,15,18,2 (+3)

4, 8, 12, 16, 20, 24, 28 (+4)

5,10,15,20,25,30,35 (+5)

100,90,80,70,60,50,40 (-10)

72, 70, 68, 66, 64, 62, 60 (-2)

95,80,65,50,35,20,5 (-15)

Технология показа последовательностей может быть такой. Вы подготовили три последовательности на плюс.

Объявляете малышу тему урока, на полу выкладываете одну за другой карточки первой последовательности, озвучивая их.

Перемещаетесь с ребёнком в другой угол комнаты и точно так же выкладываете вторую последовательность.

В третьем углу комнаты Вы выкладываете третью последовательность, при этом озвучивая её.

Выкладывать последовательности можно и друг под другом, оставляя между ними промежутки.

Старайтесь всегда идти вперёд, двигаясь от простого к сложному. Варьируйте занятия: иногда произнося вслух то, что Вы показываете, а иногда показывайте карточки молча. В любом случае ребёнок видит развёрнутую перед ним последовательность.

Для каждой последовательности нужно использовать не менее шести карточек, иногда больше, для того чтобы ребёнку легче было определить сам принцип последовательности.

Как только Вы увидели блеск в глазах ребёнка, попробуйте добавить к трём последовательностям пример (т.е. проверьте его знания).

Пример показываете так: сначала выкладываете всю последовательность, как Вы обычно это делаете, а в конце поднимаете две карточки (одна карточка - та, которая идёт следующей в последовательности, а другая - случайная) и спрашиваете ребёнка: «Какая следующая?»

На первых порах карточки в последовательностях выкладывайте друг за другом, затем формы выкладывания можно менять: кладите карточки по кругу, по периметру комнаты и т.д.

Когда будет получаться всё лучше и лучше, не бойтесь использовать в последовательностях умножение и деление.

Примеры последовательностей:

4; 6; 8; 10; 12; 14 - в данной последовательности каждое следующее число увеличивается на 2;

2; 4; 7; 14; 17; 34 - в данной последовательности чередуется умножение и сложение (х 2; + 3);

2; 4; 8; 16; 32; 64 - в данной последовательности каждое следующее число увеличивается в 2 раза;

22; 18; 14; 10; 6; 2 - в данной последовательности каждое следующее число уменьшается на 4;

84; 42; 40; 20; 18; 9 - в данной последовательности чередуется деление и вычитание (: 2; - 2);

Знаки «больше», «меньше»

Эти карточки находятся в составе 110 карточек цифр и знаков (вторая составляющая часть методики АНАСТА).

Уроки знакомства малыша с понятиями «больше-меньше» будут очень короткими. Всё, что Вам нужно, - это показать три карточки.

Технология показа

Садитесь на пол и выкладываете каждую карточку перед ребёнком так, чтобы он мог видеть сразу все три карточки. Каждую карточку называете.

Озвучить можно так: «шесть больше трёх» или «шесть больше, чем три».

На каждом занятии Вы показываете ребёнку по три разных варианта неравенств с

карточками «больше» - «меньше». неравенств в день.

Таким образом, Вы демонстрируете девять разных

Как и прежде, Вы показываете каждое неравенство только один раз.

Через несколько дней к трём показам можно добавить пример. Это уже проверка, и проводится она так:

Положите на пол приготовленные заранее карточки, например, карточку с количеством «68» и карточку со знаком «больше». Спросите малыша: «Шестьдесят восемь больше какого числа?» или «Шестьдесят восемь больше пятидесяти или девяносто пяти?». Предложите ребёнку выбрать из двух карточек нужную. Верно указанную малышом карточку, Вы (или он сам) кладёте после знака «больше».

Можно положить перед ребёнком две карточки с количествами и дать ему возможность выбрать знак, который подходит, то есть > или <.

Равенства и неравенства

Обучить равенствам и неравенствам так же просто, как и понятиям «больше» и «меньше».

Вам понадобятся шесть карточек с арифметическими знаками. Их Вы тоже найдёте в составе 110 карточек цифр и знаков (вторая составляющая часть методики АНАСТА).

Технология показа

Вы решили показать ребёнку такие два неравенства и одно равенство:

8-6<10 −7 11-3= 9 −1 55-12^50 −13

Вы выкладываете их на полу последовательно так, чтобы ребёнок мог видеть сразу каждое из них. При этом Вы всё проговариваете, например: «Восемь минус шесть не равно десять минус семь».

Точно так же Вы проговариваете во время выкладывания оставшиеся равенство и неравенство.

На начальном этапе обучения этой теме выкладываются все карточки.

Затем можно будет показывать только карточки «равно» и «не равно».

В один прекрасный день Вы даёте возможность малышу показать свои знания. Выкладываете карточки с количествами, а ему предлагаете выбрать, карточку с каким знаком надо положить: «равно» или «не равно».

Прежде, чем начать изучать алгебру с малышом,надо познакомить его с понятием переменной величины, представленной буквой.

Обычно в математике используется буква x, но поскольку ее легко спутать со знаком умножения, рекомендуется использовать y.

Вы кладете сначала карточку с пятью бусинками — костяшек, затем знак +плюс (+), после него со знаком y, потом знак равенства и, наконец, карточку с семью бусинками- костяшками. Затем вы ставите вопрос: «Что означает здесь у?»

И сами отвечаете на него: «В этом уравнении означает два»

Проверка:

Примерно через одну - полторы недели занятий на данном этапе, Вы можете дать возможность малышу выбрать ответ.

ЧЕТВЁРТЫЙ ЭТАП РАВЕНСТВА С ЦИФРАМИ И КОЛИЧЕСТВАМИ

Когда Вы прошли цифры от 1 до 20, настало время для «наведения мостов» между цифрами и количествами. Для этого есть множество способов. Одним из самых простых является использование равенств и неравенств, отношений «больше» и «меньше», демонстрируемых с помощью карточек с цифрами и костяшками.

Технология показа.

Возьмите карточку с цифрой 12, положите её на пол, затем положите рядом с ней знак «больше», а затем карточку-количество 10, проговаривая при этом: «Двенадцать больше десяти».

Неравенства (равенства) могут выглядеть следующим образом:

Каждый (равенств) день состоит из трёх занятий, а каждое занятие - из трёх неравенств количествами и цифрами. Общее количество ежедневных равенств будет равно девяти. При этом Вы одновременно продолжаете изучать цифры с помощью двух наборов по пять карточек в каждом, тоже три раза в день.

Проверка.

Можно предоставлять ребёнку возможность выбора карточек «больше», «меньше», «равно» или составлять пример таким образом, чтобы малыш сам мог его закончить. Например, кладём карточку-количество 7, затем знак «больше» и предоставляем ребёнку возможность закончить пример, то есть выбрать карточку-количество, например, 9 или карточку-цифру, например, 5.

После того, как малыш понял связь между количествами и цифрами, можно приступать к решению равенств, используя карточки как с цифрами, так и с количествами.

Равенства с цифрами и количествами.

Используя карточки с цифрами и количествами, Вы проходите уже знакомые темы: сложение, вычитание, умножение, деление, последовательности, равенства и неравенства, дроби, уравнения, равенства в два и более действий.

Если Вы внимательно посмотрите примерную схему обучения математике, (стр. 20) то увидите, что конца занятиям нет. Придумывайте свои примеры для развития устного счёта ребёнка, соотносите количества с реальными предметами (орехи, ложки для гостей, кусочки порезанного банана, хлеба и т.д.) - словом, дерзайте, творите, выдумывайте, пробуйте! И у Вас всё получится!

- (равенство устар.), равенства, ср. (книжн.). 1. только ед. отвлеч. сущ. к равный, одинаковость, полное сходство (по величине, качеству, достоинству и т.п.). «Без колхозов неравенство, в колхозах равенство прав.» Сталин. Равенство сил. Равенство… … Толковый словарь Ушакова

- (equality) Фактическое и/или нормативное утверждение равной компетенции или равного положения лиц, порождающее право на справедливое распределение (distributive justice). Квазиэмпирическое равенство индивидов относится к сугубо физическим… … Политология. Словарь.

Все люди рождаются свободными и равными в своем достоинстве и правах. Всеобщая декларация прав человека (1948 г.) Все люди рождаются равными и до самой смерти против этого борются. Лешек Кумор Люди рождаются свободными и неравными. Грант Аллен… … Сводная энциклопедия афоризмов

Одно из основных понятий социальной философии и самой социальной жизни. Основанием для всех видов Р. является формальное Р., которое в зависимости от сферы применения и выбора ценностной основы уравнивания формирует различные содержательные… … Философская энциклопедия

Социальное, характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… … Современная энциклопедия

Социальное характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… …

- (equality) Обладание одинаковым значением. Обозначается знаком равенства (=) и применимо к числам или алгебраическим выражениям. Если х и у являются действительными числами, выражение х=у означает, что х и у одинаковы. Если х и у – комплексные… … Экономический словарь

Равенство - Равенство ♦ Égalité Два существа равны, когда они одной величины или обладают одним и тем же количеством чего либо. Таким образом, понятие обретает смысл только относительно и предполагает наличие некой эталонной величины. Так, мы говорим … Философский словарь Спонвиля

См … Словарь синонимов

равенство - 1. Полное сходство, подобие (по величине, качеству, достоинству). 2. Качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы… … Справочник технического переводчика

В логике и математике отношение взаимной заменяемости объектов, которые именно в силу этой заменяемости и считаются равными (а = b). Отношение равенства обладает свойствами рефлексивности (каждый объект равен самому себе), симметричности (если а … Большой Энциклопедический словарь

Книги

  • Равенство , Дэнни Дорлинг. Книга Дэнни Дорлинга `Равенство` богата очень интересными идеями. Большая степень равенства улучшает реальное качество жизни для подавляющего большинства населения. Она улучшает ка чество…

1) качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы подчеркнуть наличие равенства и неравенства в положении отдельных социальных групп; 2) математическое тождество, уравнение.

Отличное определение

Неполное определение ↓

РАВЕНСТВО

один из принципов права. Понятие Р. - определенная абстракция, т.е. результат сознательного (мыслительного) абстрагирования от тех различий, которые присущи уравниваемым объектам. Правовое Р. не столь абстрактно. Основанием (и критерием) правового уравнения различных людей является свобода индивидов в общественных отношениях, признаваемая и утверждаемая в форме их правоспособности и правосубъектности. В этом специфика правового Р. и права вообще. Р. имеет рациональный смысл, логически и практически возможно в социальном мире именно и только правовое (формально-правовое, формальное) Р. История права - это история прогрессирующей эволюции содержания, объема, масштаба и меры формального (правового) Р. при сохранении самого этого принципа как принципа любой системы права, права вообще. Таким образом, принцип формального Р. представляет собой постоянно присущий праву принцип с исторически изменяющимся содержанием. В целом историческая эволюция содержания, объема, сферы действия принципа формального Р. не опровергает, а, наоборот, подкрепляет значение данного принципа в качестве отличительной особенности права в его соотношении с иными видами социальной регуляции (моральной, религиозной и т.д.). Исходные фактические различия между людьми, рассмотренные и урегулированные с точки зрения правового принципа Р. (равной меры), предстают в итоге в виде неравенства в уже приобретенных правах (по их структуре, содержанию и объему прав различных субъектов права). Право как форма отношений по принципу Р. не уничтожает (и не может уничтожить) исходных различий между разными субъектами права, оно лишь формализует и упорядочивает эти различия по единому основанию, трансформирует неопределенные фактические различия в формально- определенные права свободных, независимых друг от друга, равных личностей. В этом, по существу, состоит специфика, смысл и ценность правовой формы опосредования, регуляции и упорядочения общественных отношений. Правовое Р. и правовое неравенство однопорядко- вые правовые определения. Принцип правового Р. различных субъектов предполагает, что приобретаемые ими реальные субъективные права будут неравны. Благодаря праву хаос различий преобразуется в правовой порядок равенств и неравенств, согласованных по единому основанию и общей норме. Признание различных индивидов формально равными означает признание их равной правоспособности, возможности приобрести те или иные права на соответствующие блага, конкретные объекты и т.д. Формальное право - это лишь способность, абстрактная возможность приобрести, в согласии с общим масштабом и равной мерой правовой регуляции, свое, индивидуально-определенное право на данный объект. Различие в приобретенных правах у разных лиц является необходимым результатом именно соблюдения, а не нарушения принципа формального (правового) Р. этих лиц, не нарушает и не отменяет принципа формального (правового) Р. Для всех, чьи отношения опосредуются правовой формой, право выступает как всеобщая форма, как общезначимый и равный для всех этих лиц (различных по своему фактическому, физическому, умственному, имущественному положению и т.д.) одинаковый масштаб и мера. Само Р. состоит в том, что поведение и положение субъектов данного общего круга отношений и явлений подпадают под действие единого для всех закона, единой (общей, равной) меры. Лит.: Нерсесянц В.С. Право и закон. Из истории правовых учений. М, 1983; Его же. Право - математика свободы. М, 1996; Его же. Ценность права как триединства свободы, равенства и справедливости / / Проблемы ценностного подхода в праве: традиции и обновление. М., 1996. В.С. Нерсесянц

Материал статьи позволит ознакомиться с математической трактовкой понятия равенства. Порассуждаем на тему сути равенства; рассмотрим его виды и способы его записи; запишем свойства равенства и проиллюстрируем теорию примерами.

Само понятие равенства тесно переплетено с понятием сравнения, когда мы сопоставляем свойства и признаки, чтобы выявить схожие черты. Процесс сравнения требует наличия двух объектов, которые и сравниваются между собой. Данные рассуждения наводят на мысль, что понятие равенства не может иметь место, когда нет хотя бы двух объектов, чтобы было что сравнивать. При этом, конечно, может быть взято большее количество объектов: три и более, однако, в конечном, счете, мы так или иначе придем к сравнению пар, собранных из заданных объектов.

Смысл понятия «равенство» в обобщенном толковании отлично определяется словом «одинаковые». О двух одинаковых объектах можно говорить – «равные». Например, квадраты и . А вот объекты, которые хоть по какому-то признаку отличаются друг от другу, назовем неравными.

Говоря о равенстве, мы можем иметь в виду как объекты в целом, так и их отдельные свойства или признаки. Объекты являются равными в целом, когда одинаковы по всем характеристикам. Например, когда мы привели в пример равенство квадратов, имели в виду их равенство по всем присущим им свойствам: форме, размеру, цвету. Также объекты могут и не быть равными в целом, но обладать одинаковыми отдельными признаками. Например: и . Указанные объекты равны по форме (оба – круги), но различны (неравны) по цвету и размеру.

Таким образом, необходимо заранее понимать, равенство какого рода мы имеем в виду.

Запись равенств, знак равно

Чтобы произвести запись равенства, используют знак равно (или знак равенства), обозначаемый как = .Такое обозначение является общепринятым.

Составляя равенство, равные объекты размещают рядом, записывая между ними знак равно. К примеру, равенство чисел 5 и 5 запишем как 5 = 5 . Или, допустим, нам необходимо записать равенство периметра треугольника А В С 6 метрам: P А В С = 6 м.

Определение 1

Равенство – запись, в которой использован знак равно, разделяющий два математических объекта (или числа, или выражения и т.п.).

Когда возникает необходимость письменно обозначить неравенство объектов, используют знак не равно, обозначаемый как ≠ , т.е. по сути зачеркнутый знак равно.

Верные и неверные равенства

Составленные равенства могут соответствовать сути понятия равенства, а могут и противоречить ему. По этому признаку все равенства классифицируют на верные равенства и неверные равенства. Приведем примеры.

Составим равенство 7 = 7 . Числа 7 и 7 , конечно, являются равными, а потому 7 = 7 – верное равенство. Равенство 7 = 2 , в свою очередь, является неверным, поскольку числа 7 и 2 не равны.

Свойства равенств

Запишем три основных свойства равенств:

Определение 2

  • свойство рефлексивности, гласящее, что объект равен самому себе;
  • свойство симметричности: если первый объект равен второму, то второй равен первому;
  • свойство транзитивности: когда первый объект равен второму, а второй – третьему, тогда первый равен третьему.

Буквенно сформулированные свойства запишем так:

  • a = a ;
  • если a = b , то b = a ;
  • если a = b и b = c , то a = c .

Отметим особенную пользу второго и третьего свойств равенств – свойств симметричности и транзитивности – они дают возможность утверждать равенство трех и более объектов через их попарное равенство.

Двойные, тройные и т.д. равенства

Совместно со стандартной записью равенства, пример которой мы приводили выше, также часто составляются так называемые двойные равенства, тройные равенства и т.д. Подобные записи представляют собой как бы цепочку равенств. К примеру, запись 2 + 2 + 2 = 4 + 2 = 6 - двойное равенство, а | A B | = | B C | = | C D | = | D E | = | E F | - пример четвертного равенства.

При помощи таких цепочек равенств оптимально составлять равенство трех и более объектов. Такие записи по своему смыслу являются обозначением равенства любых двух объектов, составляющих исходную цепочку равенств.

Например, записанное выше двойное равенство 2 + 2 + 2 = 4 + 2 = 6 обозначает равенства: 2 + 2 + 2 = 4 + 2 , и 4 + 2 = 6 , и 2 + 2 + 2 = 6 , а в силу свойства симметричности равенств и 4 + 2 = 2 + 2 + 2 , и 6 = 4 + 2 , и 6 = 2 + 2 + 2 .

Составляя подобные цепочки, удобно записывать последовательность решения примеров и задач: такое решение становится наглядным и отражает все промежуточные этапы вычислений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter