Симбиоз – основа растительной жизни. Симбиоз в растительном мире

Симбиоз - это длительное сожительство организмов двух или нескольких разных видов растений или животных, а также расте­ний с животными, когда их отношения друг с другом очень тесны и взаимно выгодны. Симбиоз обеспечивает этим организмам лучшее преодоление неблагоприятных воздействий окружающей среды и особенно лучшее питание. В этой статье рассказывается о симбиозе в растительном мире.

В тропических странах встречается очень интересное растение - мирмекодия. Это растение муравейник. Живет оно на ветках или стволах других растений. Нижняя часть его стебля сильно расширена и представляет

собой как бы большую луковицу. Вся луковица пронизана каналами, сообщающимися друг с другом. В них и поселяются муравьи. Каналы возникают в процессе развития утолщенного стебля, а не прогрызаются муравьями. Следо­вательно, муравьи получают от растения гото­вое жилище. Но и растению приносят пользу живущие в нем муравьи.

Дело в том, что в тропиках водятся муравьи-листорезы. Они приносят большой вред расте­ниям. В мирмекодии поселяются муравьи другого вида, враждующие с муравьями-листорезами. Постояльцы мирмекодии не допу­скают листорезов к ее вершине и не дают им объесть ее нежные листья. Таким образом, растение предоставляет животному помещение, а животное защищает растение от его врагов. Кроме мирмекодии, в тропиках растет немало и других растений, находящихся в содружестве с муравьями.

Встречаются еще более тесные формы сим­биоза растений и животных. Таков, например, симбиоз одноклеточных водорослей с амебами, солнечниками, инфузориями и другими простей­шими животными. В клетках этих животных поселяются зеленые водоросли, например зоохлорелла. Долгое время зеленые тельца в клетках простейших животных считались орга­ноидами самого животного, и лишь в 1871 г. из­вестный русский ботаник Л. С. Ценковский уста­новил, что это не что иное, как сожительство простейших организмов, впоследствии назван­ное симбиозом.

Зоохлорелла, живущая в клетке амебы, лучше защищена от неблагоприятных внешних воздействий. Прежде чем ее съест какое-либо другое животное, оно должно преодолеть со­противление амебы. Тело простейшего живот­ного прозрачно, поэтому процесс фотосинтеза протекает у водоросли нормально. А животное получает от водоросли растворимые продукты фотосинтеза (главным образом углеводы - са­хар) и питается ими. Кроме того, при фото­синтезе водоросль выделяет кислород, и живот­ное использует его для дыхания. В свою очередь животное обеспечивает водоросль необходимы­ми для ее питания азотистыми соединениями. Взаимная выгода для животного и растения от симбиоза очевидна.

К симбиозу с водорослями приспособи­лись не только простейшие одноклеточные животные, но и некоторые многоклеточные. Водоросли встречаются в клетках гидр, губок, червей, иглокожих и моллюсков. Для некото­рых животных симбиоз с водорослями стал настолько необходим, что их организм не может развиваться нормально, если в его клетках нет водорослей.

Особенно интересен симбиоз, когда оба его участника - растения. Пожалуй, самый разительный пример симбиоза двух расти­тельных организмов - это лишайники. Лишайник всеми воспринимается как единый организм. На самом же деле он состоит из гриба и водоросли. Основу его состав­ляют переплетающиеся гифы (нити) гриба. На поверхности лишайника эти гифы переплетены плотно, а в рыхлом слое под поверхно­стью среди гиф гнездятся водоросли. Чаще всего это одноклеточные зеленые водоросли.

Реже встречаются лишайники с многоклеточ­ными сине-зелеными водорослями. Клетки во­дорослей оплетены гифами гриба. Иногда на гифах образуются даже присоски, которые про­никают внутрь водорослевых клеток.

Сожительство выгодно и грибу, и водоросли. Водоросль получает от гриба воду с раство­ренными минеральными солями и защиту от высыхания. А гриб получает от водоросли ор­ганические соединения, вырабатываемые ею в процессе фотосинтеза, главным образом угле­воды.

Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселяться на песчаных почвах, на голых, бесплодных скалах, на стекле, на листовом железе, т. е. там, где никакое другое растение существовать не может. Встречаются лишай­ники на Крайнем Севере, на высоких горах, в пустынях - лишь бы был свет: без света водоросль в лишайнике не может усваивать углекислоту и отмирает.

Гриб и водоросль настолько сжились в ли­шайнике, настолько представляют собой единый организм, что даже и размножаются они чаще всего совместно.

Долгое время лишайники принимали за обыч­ные растения и относили их к мхам. Зеленые клетки в лишайнике принимались за хлорофил­ловые зерна зеленого растения.

Лишь в 1867 г. такой взгляд был поколеб­лен исследованиями русских ученых А. С. Фаминцына и О. В. Баранецкого. Им удалось вы­делить зеленые клетки из лишайника ксантории и установить, что они могут не толь­ко жить вне тела лишайника, но и размножать­ся делением и спорами. Следовательно, зеленые клетки лишайника - самостоятельные водо­росли.

Каждый знает, например, что подосино­вики нужно искать там, где растут осины, подберезовики - в березовых лесах. Оказы­вается, что шляпочные грибы растут вбли­зи определенных деревьев не случайно. Те «грибы», которые мы собираем в лесу - только плодовые тела. Само же тело гриба -грибница, или мицелий, живет под землей и представляет собой нитевидные гифы, прони­зывающие почву (см. ст. «Грибы»). От поверх­ности почвы они тянутся к кончикам древес­ных корней. Под микроскопом видно, как ги­фы, словно войлоком, оплетают кончик корня. Симбиоз гриба с корнями высших растений на­зывают микоризой, что в переводе с гре­ческого означает «грибокорень».

Подавляющее большинство деревьев в на­ших широтах и очень много травянистых расте­ний (в том числе и пшеница) образуют с гри­бами микоризу. Ученые установили, что нор­мальный рост многих деревьев невозможен без участия гриба, хотя есть деревья, которые могут развиваться и без них, например береза, липа. Симбиоз гриба с высшим растением существовал еще на заре наземной флоры. Первые высшие рас­тения - псилофитовые - уже имели подземные органы, тесно связанные с гифами грибов.

Чаще всего гриб лишь оплетает корень своими гифами и образует чехол, как бы на­ружную ткань корня. Реже встречаются фор­мы симбиоза, когда гриб поселяется в самих клетках корня. Особенно ярко такой симбиоз выражен у орхидей, которые вообще не могут развиваться без участия гриба.

Наука еще не выяснила полностью, чем симбиоз выгоден грибу и растению. Можно предполагать, что гриб использует для своего питания, по-видимому, углеводы (сахар), выде­ляемые корнями растения, а высшее растение получает от гриба продукты разложения азо­тистых органических веществ в почве. Сам дре­весный корень получить эти продукты не может. Предполагают также, что грибы вырабатывают витаминоподобные вещества, усиливающие рост высшего растения. Кроме того, несомненно, что грибной чехол, облекающий корень дерева и имеющий многочисленные разветвления в поч­ве, намного увеличивает поверхность корневой системы, поглощающей воду, что очень суще­ственно в жизни растения.

Симбиоз гриба и высшего растения следует учитывать во многих практических мероприя­тиях. Так, например, при разведении леса, при закладке полезащитных лесных полос обязательно надо «заразить» почву грибами, вступающими в симбиоз с той породой деревьев, которую сажают.

Огромное практическое значение имеет сим­биоз между азотоусваивающими бактериями и высшими растениями из семейства бобо­вых (бобы, горох, фасоль, люцерна и многие другие).

На корнях бобового растения обычно воз­никают опухоли - клубеньки, в клетках кото­рых и находятся бактерии. Существование таких клубеньковых бактерий открыл в 1866 г. рус­ский ботаник М. С. Воронин. Роль же этих бактерий в жизни бобового растения устано­вили в 1886 г. немецкие ученые Г. Гельригель и Г. Вильфарт. Эти ученые доказали, что клу-

Таблица к статье „СИМБИОЗ В РАСТИТЕЛЬНОМ МИРЕ".

Вверху - симбиоз в жизни низших растений. Лишайники: 1 - кладония; 2 - пармелия; 3 - ксантория; 4 - цепочки и шаро­образные клетки водорослей, видимые в микроскоп в срезе слоевищ различных лишайников. Внизу - растения из семейства орхидейных. Большинство тропических орхидей - эпифиты, т. е. растения, живущие на других растениях: 1 - эпифитные тро­пические орхидеи с воздушными (а) и лентовидными (б) корнями, присасывающимися к растению-хозяину; 2 - наземная орхидея умеренного пояса - венерин башмачок; 3 - поперечный разрез проростка орхидеи венерин башмачок.

Таблица к статье „НАСЕКОМОЯДНЫЕ РАСТЕНИЯ".

Насекомоядные растения: 1 - непентес, растет в тропиках и субтропиках Азии, Индонезии и Австралии; 2 - саррацения, растет на болотах в приатлантических штатах Сев. Америки; 3 - жирянка, болотное растение умеренной зоны, встречается в СССР.

беньковые бактерии усваивают из атмосферы газообразный азот и используют его при созда­нии органических веществ. Затем было уста­новлено, что эти бактерии способны усваивать атмосферный азот, только живя в клетке бобо­вого растения. Бобовое же растение получает возможность дополнительного азотного пита­ния, так как лишь незначительная часть погло­щенного и связанного бактериями азота идет на построение белковых веществ самих бакте­рий, большая же часть азотистых веществ выделяется бактериями в клетки корня. Из корня эти питательные вещества переходят в клетки стебля и листьев и используются расте­нием для синтеза белковых веществ.

После сбора урожая бобовых растений клу­беньки с бактериями, улавливающими азот, ос­таются на корнях. Корни разлагаются в почве и обогащают ее связанным и хорошо усваивае­мым растениями азотом. Плодородие почвы по­вышается, и почти любое растение, посеянное на следующий год на этом участке, даст более высокий урожай.

Клубеньковые бактерии в симбиозе с бобо­выми растениями ежегодно усваивают из атмо­сферы чистого азота от 100 до 300 кг на гек­тар. Если учесть всю посевную площадь, занятую бобовыми культурами, легко понять, как велико количество улавливаемого клубень­ковыми бактериями атмосферного азота.

Симбиоз растений и грибов уже существует 400 миллионов лет и способствует большому разнообразию форм жизни на Земле. В 1845 году был открыт немецкими учеными. Микоризные эндогрибы проникают непосредственно в корень растения и образуют «грибницу» (мицелий), которая помогает корням укреплять иммунитет, бороться с возбудителями различных заболеваний, всасывать воду, фосфор и питательные вещества из почвы. С помощью гриба растение использует ресурсы почвы на полную мощность. Один корень с такой задачей не справился бы; без поддержки грибов растениям приходится направлять дополнительные резервы на увеличение корневой системы, вместо того, чтобы увеличивать наземную часть. Микориза улучшает качество почвы, аэрацию, пористость, а объем общей поглощающей поверхности корня растения увеличивается в тысячу раз!

Из-за активного вмешательства человека в природные процессы: применение тяжелой техники, внесение химических удобрений, проведение строительных работ, прокладка трубопроводов, асфальта и бетона, загрязнение воздуха и воды, возведение дамб, обработка почвы, ее эрозия, т.д. - растения стали подвергаться невиданному ранее стрессу, их иммунитет ослабевает и приводит к гибели.

С научной точки зрения МИКОРИЗА является симбиозом (обоюдовыгодным союзом) между находящимися в почве грибами и корнями высокоорганизованных растений. Термин «микориза» (от греческого микес (гриб) и риза (корень)) был введен ФРАНКОМ (1885 г.) для описания связи двух различных организмов в образовании единого морфологического целого, когда растение питает гриб, а гриб - растение.

Различают два основных вида микоризы: эктомикориза и эндомикориза. Эктомикоризу формируют базидиальные и аскомицетные грибы преимущественно в лесах умеренного пояса. Этот вид микоризы очень важен для роста лесов. Некоторые деревья, например, пинакоидальные, образуют только эктомикоризу, и никогда не формируют эндомикоризу (грибковые структуры в корне и в его межкорковых слоях).

Самым важным видом эндомикоризы является так называемая арбускулярная (древовидная) микориза (АМ), получившая название от древовидных нитей, производимых АМ грибами в корковых клетках корней (рис. 1).

Не так давно грибы АМ были включены в новую грибную формацию Glomeromycota, которая содержит в настоящее время около 180 разновидностей. Все виды являются симбиотами - их можно выводить на корнях живущих растений. AM широко распространена в мире и представляет собой самый важный симбиоз - микоризные грибы присутствуют во всех экосистемах земного шара. Успешное развитие более 80% всех видов царства растений зависит от AM.

Споры АМ грибов в корне можно различить только после окрашивания - структуры гриба становятся голубыми и теперь их можно наблюдать и даже подсчитать их количество с помощью 50-ти кратного увеличения микроскопом и проходящего света (рис. 2).

Внешняя грибница корня отвечает за прием и транспортировку питательных веществ из почвы к растению, а внутренние структуры мицелия - за передачу питательных веществ от гриба к растению и продуктов фотосинтеза от растения к грибу. Везикулы - структуры,образуемые грибами, являются органами накопления гриба. Липиды, запасаемые грибом, используются им во времена дефицита фотосинтеза растения. Споры гриба формируются во внешнем мицелии, а иногда и в корнях. Споры долгое время могут жить в почве и служат ростками гриба. Для таксономического определения видов грибов часто используют морфологические характеристики спор. Эти отростки также являются мицелием гриба и грибными нитями внутри и вне корней. Компоненты гриба также могут жить достаточно долгое время, если защищены субстратами гранул или корневыми сегментами. Споры грибов развиваются при благоприятных условиях - определенной влажности почвы и температуре, и могут вступать в симбиоз с растущим корнем растения-партнера. Процесс роста и симбиотического формирования длится 1-7 дней. Микоризные препараты Микор-плюс содержат все три источника прививочных ростков.

Роль гриба в формировании единой массы почвы

Плодородные земли имеют высокий стабильный уровень влаги в почве. Грибы АМ могут связывать и укреплять компоненты почвы благодаря интенсивному развитию мицелия, внеклеточным полимерным составляющим грибовидных нитей и гликопротеинам, известных под именем Гломалин. Учеными доказано, что микоризные растения, растущие в песках, в пять раз больше связывают песок у корневой системы, чем растения со сходной биомассой, но без симбиоза с АМ.

Роль АМ грибов в поглощении растением питательных компонентов

Поглощение питательных элементов почвы растением в основном определяется всасывающей способностью его корня, распределением питательных веществ и соответствующим содержанием микроэлементов в почве. Поглощающая способность ионов с высокой мобильностью, таких как NO3-, зависит от видов растений, а ионов с низкой скоростью диффузии, например, P, Zn, and Mo, и в меньшей степени, K, S, and NH4+, зависит от плотности корня на объем земли. В последнем случае морфология корня и внешний мицелий в АМ гриба определяют скорость поглощения элементов растения.
Усиление поглощаемости питательных элементов микоризными растениями, в частности, фосфатов, нередко связывают с ускоренным развитием растения. Даже если надземная часть микоризного растения визуально не увеличилась в размерах, то его корневая система становится крупнее. У микоризного растения более сбалансированная система питания, которая укрепляет и поддерживает его в здоровом состоянии и увеличивает сопротивляемость биотическим и абиотическим факторам.
Увеличение ризосферы АМ
Одновременно с проникновением внутрь корней, АМ грибы развивают мицелий и вокруг корней. Внутренние и внешние гифы входят в контакт с десятком соединительных мест на одном сантиметре корня. В природных условиях соединительных мест может быть меньше. Внешний мицелий может под землей разрастаться и вширь (в эксперименте была выявлена удаленность гриба от корня растения на 8 сантиметров, и полагают, что это еще не предел).
Пока еще нет информации о плотности внешнего мицелия в АМ гриба в зависимости от его удаленности от корня; непрямые методы измерения предполагают, что плотность мицелия достигает максимума на расстоянии 0-2 сантиметра от корня. Вероятно, что плотность грибницы определяется самим грибом и зависит от факторов окружающей среды и почвы. В нетронутом тропическом лесу были обнаружены гифы АМ гриба длиной от 5- до 39 метров/мл, а в субтропической экосистеме дюн среднее значение составило 12 м гифов /г почвы. На одном сантиметре привитого корня униолы метельчатой насчитали 200-1000 м гифов АМ гриба, а грибная биомасса на один грамм сухого вещества тропической почвы составила 0,03-0,98 г.
Благодаря внешней грибнице контакт корня со средой, в которой он растет, значительно увеличился. Приняв во внимание, что 1 см корня без микоризы может взаимодействовать с 1-2 см объема почвы с помощью корневых волосков, можно потенциально рассчитать увеличение объема с помощью внешнего мицелия в 5-200 раз, рассматривая радиальное распространение гифов в АМ гриба вокруг корня. Увеличение ризосферического объема почвы до 200 см, является, скорее, исключением из правил, тогда как 12-15 см3 почвенного объема на сантиметр привитого корня - уже обычное явление.
Более того, мицелий АМ гриба оказался более устойчивым к абиотическим стрессам, таким как засуха, токсичность и кислотность почвы, чем сам корень. Растение в симбиозе с грибом остается в тесном контакте с почвой более длительное время, чем растение без подобного симбиоза. Продолжительность жизни внешнего мицелия неизвестна, но обнаружено, что процент активного внешнего мицелия резко уменьшается спустя 3-4 недели после первой прививки растения грибом.

Микор- плюс - инновационный продукт, экологически чистый натуральный препарат, органический регулятор роста растений. Микор- плюс представляет собой гранулированный микоризный препарат. Это споры эндомикоризных грибов (семейства Гломус), заключенные в 3-5 мм гранулы перлита (носитель).


В тропических странах встречается очень интересное растение - мирмекодия. Это растение-муравейник. Живет оно на ветках или стволах других растений. Нижняя часть его стебля сильно расширена и представляет собой как бы большую луковицу. Вся луковица пронизана каналами, сообщающимися между собой. В них и поселяются муравьи. Эти каналы возникают в процессе развития утолщенного стебля, а не прогрызаются муравьями. Следовательно, муравьи получают от растения готовое жилище.

Но и растению приносят пользу живущие в нем муравьи. Дело в том, что в тропиках водятся муравьи-листорезы. Они приносят большой вред растениям. В мирмекодии поселяются муравьи другого вида, враждующие с муравьями-листорезами. Постояльцы мирмекодии не допускают листорезов к ее вершине и не дают им объесть ее нежные листья. Таким образом, растение предоставляет животному помещение, а животное защищает растение от его врагов. Кроме мирмекодии в тропиках растет немало и других растений, находящихся в содружестве с муравьями.

Встречаются еще более тесные формы симбиоза растений и животных. Таков, например, симбиоз одноклеточных водорослей с амебами, солнечниками, инфузориями и другими простейшими животными. В этих одноклеточных животных поселяются зеленые водоросли, например зоохлорелла. Долгое время зеленые тельца в клетках простейших животных считались органоидами, т. е. постоянными частями самого одноклеточного животного, и лишь в 1871 г. известный русский ботаник Л. С. Ценковский установил, что здесь имеет место сожительство разных простейших организмов. Впоследствии это явление было названо симбиозом.

Зоохлорелла, живущая в теле простейшего животного амебы, лучше защищена от неблагоприятных внешних воздействий. Тело амебы прозрачно, поэтому процесс фотосинтеза протекает у водоросли нормально. Животное получает от водоросли растворимые продукты фотосинтеза (главным образом углеводы - сахар) и питается ими. Кроме того, при фотосинтезе водоросль выделяет кислород, и животное использует его для дыхания. В свою очередь животное обеспечивает водоросль необходимыми для ее питания азотистыми соединениями. Взаимная выгода для животного и растения от симбиоза очевидна.

К симбиозу с водорослями приспособились не только простейшие одноклеточные животные, но и некоторые многоклеточные. Водоросли встречаются в клетках гидр, губок, червей, иглокожих и моллюсков. Для некоторых животных симбиоз с водорослями стал настолько необходим, что их организм не может развиваться нормально, если в его клетках нет водорослей.

Симбиоз растений и грибов уже существует 400 миллионов лет и способствует большому разнообразию форм жизни на Земле. В 1845 году был открыт немецкими учеными. Микоризные эндогрибы проникают непосредственно в корень растения и образуют «грибницу» (мицелий - прим. сайт), которая помогает корням укреплять иммунитет, бороться с возбудителями различных заболеваний, всасывать воду, фосфор и питательные вещества из почвы. С помощью гриба растение использует ресурсы почвы на полную мощность. Один корень с такой задачей не справился бы; без поддержки грибов растениям приходится направлять дополнительные резервы на увеличение корневой системы, вместо того, чтобы увеличивать наземную часть. Микориза улучшает качество почвы, аэрацию, пористость, а объем общей поглощающей поверхности корня растения увеличивается в тысячу раз!

Из-за активного вмешательства человека в природные процессы: применение тяжелой техники, внесение химических удобрений, проведение строительных работ, прокладка трубопроводов, асфальта и бетона, загрязнение воздуха и воды, возведение дамб, обработка почвы, ее эрозия, т.д. - растения стали подвергаться невиданному ранее стрессу, их иммунитет ослабевает и приводит к гибели.

С научной точки зрения микориза является симбиозом (обоюдовыгодным союзом) между находящимися в почве грибами и корнями высокоорганизованных растений. Термин «микориза» (от греческого микес (гриб) и риза (корень)) был введен Франком (1885 г.) для описания связи двух различных организмов в образовании единого морфологического целого, когда растение питает гриб, а гриб – растение.

Различают два основных вида микоризы: эктомикориза и эндомикориза. Эктомикоризу формируют базидиальные и аскомицетные грибы преимущественно в лесах умеренного пояса. Этот вид микоризы очень важен для роста лесов. Некоторые деревья, например, пинакоидальные, образуют только эктомикоризу, и никогда не формируют эндомикоризу (грибковые структуры в корне и в его межкорковых слоях).

Самым важным видом эндомикоризы является так называемая арбускулярная (древовидная) микориза (АМ), получившая название от древовидных нитей, производимых АМ грибами в корковых клетках корней.

Биологи обнаружили взаимовыгодное сотрудничество между обитающими на Борнео муравьями Camponotus schmitzi и насекомоядным растением непентес (Nepenthes bicalcarata). Это первый известный случай мутуализма между насекомыми и насекомоядным растением. Работа ученых опубликована в журнале PLoS ONE.

Непентес обитает на бедных питательными веществами торфяных болотах и вынуждено получать азот и другие элементы от насекомых, падающих в своеобразный кувшин с пищеварительными ферментами. Оказывается, что в этом хищному растению помогают другие насекомые - муравьи.

Ученые сравнили непентесы, заселенные и не заселенные муравьиными колониями. У растений сопоставили такие параметры как площадь листьев, их окраска, химический и изотопный состав. Оказалось, что в тех растениях, которые лишены соседей-муравьев, содержание азота в листьях было почти в три раза меньше, чем у тех, которые были заселены колониями. Фактически, растения, лишенные помощи соседей, постоянно находились в состоянии азотного голодания и не могли полноценно развиваться.

Муравьи ухаживали за непентесом: очищали края кувшина, чтобы они всегда оставались гладкими, удаляли из кувшина слишком крупную непереваренную добычу и даже прогоняли долгоносиков, желающих полакомиться побегами растения. Но самая главная услуга муравьев для цветка заключалась в том, что насекомые оставляли свои продукты жизнедеятельности растению и, таким образом, подкармливали его. Большую часть азота, как показал изотопный анализ, непентес получал именно от муравьев.

В благодарность растение предоставляло муравьям специализированные побеги, в которых они устраивают свое жилье, и подкармливало насекомых нектаром.
Непентесы являются одними из самых крупных насекомоядных или хищных растений, которых на данный момент насчитывается более 600 видов. В ловушку филиппинского непентеса порой попадают даже крысы и мелкие птицы.

Разные виды хищных растений используют разные приспособления для ловли жертв - это липкие ловушки, кувшинчики со скользкими стенками или даже активно закрывающиеся капканы у мухоловок. Самые крупные хищные растения обитают в тропиках, а в московской области на торфяных болотах можно найти несколько видов росянок.



Грибы - сапротрофы питаются за счёт разложения отмерших растительных остатков (опавших листьев, хвои, веток, древесины).

Грибы - симбионты получают питательные вещества не только из лесной подстилки, но и из корней древесных пород. Они вступают с деревьями в своеобразную форму сожительства, (симбиоз), образуют на корнях деревьев так называемую микоризу, или грибокорень. Симбионты сожительствуют с определёнными породами деревьев. Так, подосиновики растут, как правило, под осинами, подберёзовики под березами, дубовики по соседству с дубами и т.д. Однако большое количество микоризных грибов могут жить не с одной, а со многими древесными породами. Например, подосиновик образует микоризу не только с осиной, но и с березой, а белый гриб сожительствует почти с пятьюдесятью деревьями.

Любители грибов хотят знать, под каким деревом какие грибы особенно распространены, в каких лесах какие грибы искать. У каждого дерева есть свой помощник его зелёной жизни. Гриб без дерева и дерево без гриба не жильцы.

И так под каким деревом?

Под берёзой: белый трюфель, белый гриб, дубовик (двойник белого), настоящий груздь (мохнач), подосиновик, черный подберезовик, сыроежка (в том числе: зеленая), фиолетовая рядовка, волнушка, тонкая свинушка, оленьей гриб, валуй и конечно красный мухомор.

Под дубом: белый гриб, крапчатый дубовик, дубовый рыжик, подмолочник, (перечный, синеющий) груздь, сыроежка (розовая), гладыш-молочай, волнушка белая, свинушка, оленьей гриб, скрипица, сатанинский гриб (похож на белый), валуй, красный мухомор.

Под осиной: (красный и простой) подосиновик, груздь (осиновый, собачий), сыроежка, валуй.

Под елью: белый гриб (самый настоящий белый боровик-еловик), трюфель (белый), (красный) рыжик, подосиновик, подберёзовик (чёрный), заправский сыромахнатый груздь, (чёрный, жёлтый) груздь, сыроежка (красная), валуй, свинушка, лисичка, красный мухомор.

Под сосной: боровик (черноголов-крепыш), рыжик (оранжевый), маслёнок (настоящий), маховик (зелёный, жёлто-бурый, каштановый), сыроежка (тёмно-красная, ломкая), ежевик, фиолетовая рядовка, свинушка, красный мухомор.

Под тополем: подберёзовик (серый), груздь (осиновый, синеющий).

Под вековой липой: дубовик, свинушка, сатанинский гриб.

Под ольхой: трюфель, белый гриб, молочай.

Под орешником: трюфель, белый гриб, молочай, груздь (перечный), валуй.

Под можжевельником: (белый) трюфель.

Микробно-растительные симбиозы

Симбиоз (Антуан Де Бари, 1879) – это «совместное существование разных организмов». Однако традиционно сложилось, что в качестве примера симбиоза микроорганизмов и растений приводится взаимовыгодное сосуществование бактерий рода Rhizobium, способных к азотфиксации, с бобовыми растениями, хотя этот тип взаимоотношений более соответствует понятию мутуализма.

Бактерии рода ризобиум – это аэробные грамотрицательные палочки длиной 0,7–1,8 мкм, живущие в почве и на поверхности растений. При инфицировании бобовых вызывают у последних образование на корнях клубневидных образований.

Для каждого рода бобовых имеются свои разновидности (штаммы) бактерий, которые называют по названию растения-хозяина. Например, Rhizobium trifolii – клубеньковые бактерии клевера, Rh.lupini – клубеньковые бактерии люпина и пр.

Растения и ризосферные бактерии «обмениваются» химическими веществами – «сигналами», которые позволяют им вступать в мутуалистические взаимоотношения. Среди таких веществ, образуемых ризобактериями, имеются стимуляторы роста растений – гормоны роста растений, в частности ауксин (индол-3-уксусная кислота, ИУК). Активными продуцентами ИУК являются бактерии Aeromonas veronii, Edwardsiella tarda, Listonella anguillarum, Pantoea ananas, Vibrio fluvialis, Vibrio furnisii, в том числе типичные почвенные бактерии, представители родов Arthrobacter, Agrobacterium, Pseudomonas и др.

Кроме ауксина некоторые ризобактерии продуцируют N-ацилированный лактон гомосерина (АЛГ), который служит аутоиндуктором активности бактериальной популяции и взаимодействия бактерий с окружающей средой и растением-хозяином. Широко известен продецент АЛГ - Agrobacterium tumefaciens. Важную роль в микробно-растительных взаимодействиях играют и некоторые высокомолекулярные соединения, в частности лектины.

Лектины – углеводсодержащие белки, обладающие свойством обратимо и избирательно связывать углеводы и углеводные детерминанты биополимеров без изменения их ковалентной структуры. Лектины синтезируются практически всеми живыми организмами и в связи с этим играют роль в межорганизменных взаимодействиях всех уровней. Лектины участвуют в адгезии, влияют на прорастание семян, могут выполнять защитную роль.

Согласно одной из гипотез, симбиоз Rhizobium и бобовых возник как результат защитной реакции бобовых от патогенов, которыми выступали бактерии рода Rhizobium. Взаимодействие данных организмов – сложный многоступенчатый процесс, контролируемый множеством генов как в бактериях, так и в растениях.

Азотфиксация осуществляется ферментным комплексом бактерий – нитрогеназой. Нитрогеназа очень чувствительна к кислороду, инактивируясь в его присутствии. Следовательно, процесс азотфиксации может часто лимитироваться наличием кислорода.

Процесс инфицирования начинается с адгезии клеток бактерий на поверхности корневых волосков. Корневые волоски бобовых продуцируют особые вещества – хемоаттрактаты для бактерий. К таким соединениям относятся флавоноиды и изофлавоноиды. В процессе узнавания принимают участие лектины, способствующие прикреплению бактерий к корневым волоскам. Флавоноиды и изофлавоноиды индуцируют экспрессию бактериальных nod-генов, которые отвечают за синтез веществ, называемых Nod-факторами, обеспечивающих межвидовое взаимодействие. В настоящее время известно более 24 веществ, продуктов экспрессии nod-генов, большинство из них ферменты. Компонент корневых экссудатов, аминокислоту триптофан, ризобии способны трансформировать индолилуксусную кислоту. ИУК по своей природе является ростовым гормоном, стимулирующим рост растительных клеток.

В месте выделения экссудатов (кончик корневого волоска) имеет место и повышенное скопление бактерий, а следовательно и повышенное выделение ИУК. Это ведёт к более активному росту поверхностных клеток корневого волоска, в результате чего корневой волосок закручивается, а бактерии оказываются как ба внутри спирали. В процессе участвует и фермент полигалактуроназа, который может синтезироваться как бактериями, так и растением. Этот фермент, гидролизуя пектины, размягчает поверхностные покровы волоска. Бактерии, проникая через корневые волоски внутрь клеток растения, формируют инфекционную нить, которая, развиваясь в кортексе корня, активно инфицирует его тетраплоидные клетки. Клетки ризобий, выходя из инфекционной нити, теряют свою первоначальную палочковидную форму, и в этом состоянии их называют бактероидами. Интенсивный рост и размножение тетраплоидных клеток и бактероидов приводит к образованию наростов на корнях растения, называемых клубеньками. Внутри клубеньков протекает процесс азотфиксации – биологическое превращение бактериями газообразного атмосферного азота в доступную растениям форму – аммоний.

В акте азотфиксации главную роль играет вещество леггемоглобин. Этот пигмент находится, по-видимому, в растительных клетках, а его синтез осуществляется частично бактериями и частично растением, т. е. можно говорить о симбиозе на молекулярно-генетическом уровне.

Симбиоз актиномицетов и растений

В симбиотические отношения с растениями способны вступать представители цианобактерий и актиномицетов, в частности представители рода Frankia.

Frankia sp. – нитевидные бактерии, которые способны фиксировать атмосферный азот и преобразовывать его в аммонийную форму.

Симбиотические отношения Frankia могут возникнуть с более чем 200 видами двудольных древесных растений, принадлежащих к 8 семействам, среди которых ольха (Alnus), облепиха (Hippophae), стланик (Dryas) и др. При проникновении в растения часть гиф Frankia превращается в морфологически уникальные структуры, способные к азотфиксации и называемые везикулами. К конечном итоге на корнях инфицированных растений образуются азотфиксирующие клубеньки, где и происходит синтез нитрогеназы и фиксации азота.

Корневые клубеньки древесных растений довольно крупные, обычно формируются на боковых корнях. Клубеньки бывают двух типов – коралловые и (у ольхи, облепихи) с прорастающими через дольки клубенька корнями, направленными вверх (у казуарины). Азотфиксирующие актиномицеты обладают определённой специфичностью к растениям.

Актиномицеты-симбионты способны инфицировать только паренхимные клетки коры корня. Микроорганизм проникает в корни из почвы через корневые волоски, которые в результате скручиваются. В месте инфицирования стенки корневого волоска утолщаются и гифы, проникшие внутрь клетки, покрываются толстым чехлом. По мере продвижения гиф по корневым волоскам чехол утоньшается, и вокруг гиф формируется капсула, которая образуется как растением, так и актиномицетом.

Из корневого волоска гифы проникают в эпидермис и кору корня, вызывая деление и гипертрофию инфицированных клеток. Как правило, клубки гиф заполняют центр клеток растения, у клеточных клеток происходит расширение и деление концов гиф, и формируются специфические структуры – везикулы. В клубеньках образуется вещество, подобное леггемоглобину бобовых растений. В конце вегетации везикулы деградируют, но в клетках растений сохраняются гифы, заражающие весной новые ткани. Обычно при симбиозе с небобовыми растениями энергия азотфиксации актиномицетами рода Frankia больше, чем у клубеньковых бактерий бобовых растений.

Бактерии рода Frankia способны к азотфиксации и в свободноживущем состоянии, т.е. без контакта с растением.

Грибо-растительный симбиоз. Микориза

Грибы, как и растения вступают с растениями в симбиотические (мутуалистические) отношения. Партнерами такого симбиоза являются в первую очередь высшие грибы, а со стороны растений – небобовые растения, в том числе многолетние древесные растения. Речь идёт о микоризообразовании. В таких отношениях гриб использует растение как источник питательных веществ, не вызывая его заболевания. Для гриба, установившего связь с растением, существенно снижается конкурентное давление со стороны других микро- и макроорганизмов. В свою очередь, гриб способствует обеспечению растения соответствующими питательными веществами, в первую очередь фосфором, азотом и калием, а также и влагой. Гриб «защищает» инфицированное растение от реальных фитопатогенов, в частности от грибов Euzarium, способствует выработке у него устойчивости к токсинам и др. Такое явление называют индуцированной устойчивостью.

Различают эктотрофную и эндотрофную микоризу. Эктомикоризные грибы (Из аскомицетов - трюфели, из базидиомицетов – болетовые, сыроежки, паутинник и др.) на корнях растений образуют внешний покров до 40 мкм толщиной. Гифы проникают в межклеточное пространство тканей корней, но не в клетки. В случае эндотрофной микоризы – это, как правило, представители несовершенных грибов, их мицелий проникает внутрь тканей и клеток корня. Такой тип микоризы часто образуется с растениями семейств вересковых, орхидных и др. Микоризные грибы занимают уникальную экологическую нишу, связывая внешнюю окружающую среду и внутреннюю среду растений.

Большинство эндомикоризных грибов в процессе взаимодействия с растениями образуют морфологически особые структуры, везикулы и арбускулы, из-за чего её часто называют везикулярно-арбускулярной микоризой (ВАМ). После проникновения в корень (обычно это корневой волосок) гифа растёт в двух направлениях – к кончику и основанию волоска. В клетках кортекса корня гифы образуют дихотомически ветвящиеся структуры – арбускулы. Также гифы грибов образуют в других клетках кортекса корня пузырьковидные вздутия – везикулы. Считается, что именно через эти структуры происходит химическое взаимодействие гриба и растения.

ВАМ возникает на корнях как однолетних, так и многолетних диких и культурных растений, в том числе пшеницы, кукурузы, многих паслёновых, винограде и др. Микоризные грибы имеют много особенностей. Они являются многоядерными, в цитоплазме многих ВАМ, таких как Glomus caledonium, Acaulospora laevis, Gigaspora margarita и некоторых других, а также в образуемых ими спорах присутствуют структуры, напоминающие бактерии. Таким образом, можно уже говорить о тройственном бактерио-грибо-растительном взаимодействии. ВАМ – облигатные симбионты, их не удаётся выращивать на искусственных средах.

Другие формы взаимовыгодных микробно-растительных взаимодействий

Азотфиксация имеет место не только в почве, в ассоциации с корнями растений или вне их, но и на поверхности растений. Цианобактерия Anabaena образует на нижней стороне листьев тропического водного папоротника Azolla слизистые углубления, которые со временем как бы погружаются (инвагинируют) в лист папоротника. Anabaena фиксирует атмосферный азот, а Azolla, как и положено растению, обеспечивает цианобактерию необходимыми ей питательными веществами.

Примером облигатного симбиоза одноклеточных фотосинтезирующих организмов и грибов является лишайник.

Лишайники (Lichenes) – широко распространенная группа симбиотических организмов, обычно растущих на камнях или древесных стволах, реже на почве и получающих необходимую им для жизни влагу из атмосферы. Несколько видов обитают на морской литорали (приливо-отливной полосе). Как правило, грибной мицелий служит для водоросли защитной оболочкой, предохраняющей ее от высыхания и в то же время позволяющей ей беспрепятственно получать необходимые для фотосинтеза воду и углекислый газ. Сам гриб, не способный синтезировать органические вещества, питается продуктами фотосинтеза водоросли.

Фотобионт обычно представлен зелеными водорослями (Chlorophyta) или цианобактериями, а микобионт – сумчатыми (Ascomycetes) или, гораздо реже, трутовыми базидиальными (Basidiomycetes) грибами. Именно цианобактерии осуществляют азотфиксацию и тем самым снабжают азотными компонентами весь таллом лишайника.

По строению тела (таллома, или слоевища) лишайники бывают накипными (корковыми), листоватыми и кустистыми. Они распространены по всему земному шару от тропиков до приполярных областей. Хорошо известны такие лишайники, как ягель, или олений мох (Cladonia rangiferina), и виды Usnea, свешивающиеся с деревьев наподобие бород и очень похожие внешне на цветковые эпифитные растения рода Tillandsia.

Лишайники очень чувствительны к загрязнению воздуха, особенно к диоксиду серы (сернистому газу). При этом степень чувствительности варьирует у разных видов, поэтому их используют в качестве биоиндикаторов степени загрязненности окружающей среды.

Результат воздействия патогена на растение может проявляться в разрешении тканей растения (появляются раневые участки или участки гниющих тканей); образование токсинов, которые вызывают локальные некрозы тканей; изменении гормонального баланса (происходит локальный быстрый рост тканей, в результате чего образуются опухоли, например галлы); поглощении патогеном питательных веществ и энергии, в результате чего снижается или прекращается совсем рост растения-хозяина; нарушении транспортных путей питательных веществ и воды или их перехват, что приводит к увяданию растения или сильным нарушением развития.

Примером одной из наиболее агрессивных бактерий-фитопатогенов может быть Agrobacterium tumefaciens.

Agrobacterium tumefaciens - грамотрицательная, облигатно аэробная палочковидная почвенная бактерия рода Agrobacterium. Способна трансформировать клетки растений при помощи специальной плазмиды.

Эта бактерия поражает однодольные и двудольные растения. В результате инфицирования растений на листьях образуются вздутия галлы.

Улучшение фосфорного и азотного питания растений

Бактерии, входящие в состав препарата «Гуапсин плюс», способны в симбиозе с растениями обогащать 1 га почвы на 2-5 ц. доступных для растений азотистых соединений в год, что на практике позволят существенно снизить дозы внесения минеральных удобрений (аммиачной селитры и карбамида).

Укрепление иммунитета растений

«Гуапсин плюс» способствует повышению продуктивности растений и их устойчивости к заболеваниям. В ходе своей деятельности бактерии «Гуапсин плюс» вырабатывают ферменты, аналоги антибиотиков, которые играют важную роль в супрессии (подавлении) роста возудителей болезней сельскохозяйственных культур. Кроме того, синтезируют индолил-3-уксусную кислоту (ИУК), стимулирующую рост и развитие растений...

Получение экологически безопасных продуктов

Получение экологически безопасных продуктов достигается благодаря отказу от "химии", которая в больших количестве далает сельхозпродукцию, вредной для потребителей. Кроме того, «Гуапсин плюс»® устраняет последствия стресса растений от частого применения химических препаратов и передозировки удобрений...

Увеличение урожайности и вкусовых качеств плодов

Применение биологических приёмов стимуляции роста позволяет наиболее полно реализовать потенциальные возможности растения, заложенные в геноме природой, ускорить сроки созревания, улучшать качество и увеличивать продуктивность растений.

Повышение устойчивости растений к заморозкам и к засухам

Обладая запасом дополнительной энергии, производимые биопрепаратом «Гуапсин плюс» фитогормоны повышают мобильность прохождения реакций, сокращая время метаболизма при благоприятных условиях в десятки раз. Соответственно возрастает выживаемость растений при неблагоприятных погодных условиях, при засухах и при заморозках.

Стимулирование роста растений

Применение биологических приёмов стимуляции роста позволяет наиболее полно реализовать потенциальные возможности растения, заложенные в геноме природой, ускорить сроки созревания, улучшать качество и увеличивать продуктивность растений...