Формулы гидроксидов проявляющих амфотерные свойства. Амфотерные соединения

Амфотерные соединения

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K 2 O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO 3 и кислотный гидроксид H 2 SO 4 (серную кислоту):

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью . Таким оксидам и гидроксидам и будет приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4 , например (Al 2 O 3 , Al (OH ) 3 , Fe 2 O 3 , Fe (OH ) 3)

И четыре исключения: металлы Zn , Be , Pb , Sn образуют следующие оксиды и гидроксиды: ZnO , Zn ( OH ) 2 , BeO , Be ( OH ) 2 , PbO , Pb ( OH ) 2 , SnO , Sn ( OH ) 2 , в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства .

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3 .

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3 ) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

    Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn (OH ) 2 как кислоту. У кислоты водород спереди, вынесем его: H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2K OH (тв.) + H 2 ZnO 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn (OH ) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn (OH ) 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

Pb(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 PbO 2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al (OH ) 3 , Cr (OH ) 3 , Fe (OH ) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al (OH ) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O .

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH) 4 → H 4 SnO 4 → H 2 SnO 3

Pb(OH) 4 → H 4 PbO 4 → H 2 PbO 3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn (OH ) 2 , Pb (OH ) 2), и +4 (Sn (OH ) 4 , Pb (OH ) 4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

Формула гидроксида

Sn (OH ) 2

Pb (OH ) 2

Sn (OH ) 4

Pb (OH ) 4

Формула гидроксида в виде кислоты

H 2 SnO 2

H 2 PbO 2

H 2 SnO 3

H 2 PbO 3

Соль (калиевая)

K 2 SnO 2

K 2 PbO 2

K 2 SnO 3

K 2 PbO 3

Название соли

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

Взаимодействия:

Запомните, реакции, приведенные ниже, протекают при сплавлении.

    Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

    Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO (тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + CO 2

    Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного гидроксида со щелочью:

Zn (OH ) 2(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

    Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn (OH ) 2(тв.) + K 2 CO 3(тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO 3 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2

    Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO 3(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO 3(тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + 2CO 2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Название соли

BeO

Be(OH) 2

H 2 BeO 2

BeO 2 2-

K 2 BeO 2

Метабериллат (бериллат)

ZnO

Zn(OH) 2

H 2 ZnO 2

ZnO 2 2-

K 2 ZnO 2

Метацинкат (цинкат)

Al 2 O 3

Al(OH) 3

HAlO 2

AlO 2

KAlO 2

Метаалюминат (алюминат)

Fe 2 O 3

Fe(OH) 3

HFeO 2

FeO 2 —

KFeO 2

Метаферрат (НО НЕ ФЕРРАТ)

Sn(OH) 2

H 2 SnO 2

SnO 2 2-

K 2 SnO 2

Pb(OH) 2

H 2 PbO 2

PbO 2 2-

K 2 PbO 2

SnO 2

Sn (OH ) 4

H 2 SnO 3

SnO 3 2-

K 2 SnO 3

МетастаннАТ (станнат)

PbO 2

Pb (OH ) 4

H 2 PbO 3

PbO 3 2-

K 2 PbO 3

МетаблюмбАТ (плюмбат)

Cr 2 O 3

Cr(OH) 3

HCrO 2

CrO 2 —

KCrO 2

Метахромат (НО НЕ ХРОМАТ)

    Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами , и когда он окружен шестью гидроксид-ионами .

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH — → Al(OH) 4 —

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH) 3 + 3OH — → Al(OH) 6 3-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно . Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al (OH ) 4 — или Al (OH ) 6 3- .

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al (OH ) 3 + KOH → K (тетрагидроксоалюминат калия)

Al (OH ) 3 + 3KOH → K 3 (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K 3 (допустимо образование K ». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Al 2 O 3 + NaOH → Na 3

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Название соли

Al 2 O 3

Al(OH) 3

Тетрагидроксоалюминат натрия

Al(OH) 3 + NaOH → Na

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Na 3

Гексагидроксоалюминат натрия

Al(OH) 3 + 3NaOH → Na 3

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

Zn(OH) 2

K 2

Тетрагидроксоцинкат натрия

Zn(OH) 2 + 2NaOH → Na 2

ZnO + 2NaOH + H 2 O → Na 2

Zn + 2NaOH + 2H 2 O → Na 2 + H 2

K 4

Гексагидроксоцинкат натрия

Zn(OH) 2 + 4NaOH → Na 4

ZnO + 4NaOH + H 2 O → Na 4

Zn + 4NaOH + 2H 2 O → Na 4 + H 2

Be(OH) 2

Li 2

Тетрагидроксобериллат лития

Be(OH) 2 + 2LiOH → Li 2

BeO + 2LiOH + H 2 O → Li 2

Be + 2LiOH + 2H 2 O → Li 2 + H 2

Li 4

Гексагидроксобериллат лития

Be(OH) 2 + 4LiOH → Li 4

BeO + 4LiOH + H 2 O → Li 4

Be + 4LiOH + 2H 2 O → Li 4 + H 2

Cr 2 O 3

Cr(OH) 3

Тетрагидроксохромат натрия

Cr(OH) 3 + NaOH → Na

Cr 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксохромат натрия

Cr(OH) 3 + 3NaOH → Na 3

Cr 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Fe 2 O 3

Fe(OH) 3

Тетрагидроксоферрат натрия

Fe(OH) 3 + NaOH → Na

Fe 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксоферрат натрия

Fe(OH) 3 + 3NaOH → Na 3

Fe 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4 ) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.

Основания - Это химическое соединение, способное образовывать ковалентную связь с протоном (основание Бренстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса)

Химические свойства оснований

Щелочи

Нерастворимые основания

Изменение окраски индикторов

фенолфталеин - малиновый

метилоранж - оранжевый

лакмус- синий

универсальный индикатор - от синего до фиолетового

не меняют

Взаимодействие с кислотами (реакция нейтрализации)

2NaOH+H2SO4=Na2SO4+2H2O2NaOH+H2SO4=Na2SO4+2H2O

Cu(OH)2+2HNO3=Cu(NO3)2+2H2OCu(OH)2+2HNO3=Cu(NO3)2+2H2O

Взаимодействие с кислотными оксидами

SO2+2KOH=K2SO3+H2O4SO2+2KOH=K2SO3+H2O4

Взаимодействие с амфотерными оксидами

Al2O3+6NaOH+3H2O=2Na3Al2O3+6NaOH+3H2O=2Na3 в растворе

Al2O3+2NaOH=2NaAlO2+H2OAl2O3+2NaOH=2NaAlO2+H2O в расплаве

Взаимодействие с солями

средними (правило Бертолле): 2NaOH+MgSO4=Mg(OH)2↓+Na2SO42NaOH+MgSO4=Mg(OH)2↓+Na2SO4

NaHCO3+NaOH=Na2CO3+H2ONaHCO3+NaOH=Na2CO3+H2O

Разложение при нагревании

не разлагаются, кроме LiOH:

2LiOH−→−−−−−800∘C,H2Li2O+H2O2LiOH→800∘C,H2Li2O+H2O

Cu(OH)2=CuO+H2OCu(OH)2=CuO+H2O

Взаимодействие с неметаллами

2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O

6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O

Методы получения оснований

1 . электролиз водных растворов солей активных металлов:

2NaCl+2H2O=2NaOH+H2+Cl22NaCl+2H2O=2NaOH+H2+Cl2

В ходе электролиза солей металлов, стоящих в ряду напряжения до алюминия, на катоде происходит восстановление воды с выделением газообразного водорода и гидроксид-ионов. Катионы металла, образованные в ходе диссоциации соли, образуют с полученными гидроксид-ионами основания.

2 . взаимодействие металлов с водой: 2Na+2H2O=2NaOH+H22Na+2H2O=2NaOH+H2 Этот метод не находит практического применения ни в лаборатории, ни в промышленности

3 . взаимодействие оксидов с водой: CaO+H2O=Ca(OH)2CaO+H2O=Ca(OH)2

4 . обменные реакции (можно получать и растворимые и нерастворимые основания): Ba(OH)2+K2SO4=2KOH+BaSO4↓Ba(OH)2+K2SO4=2KOH+BaSO4↓ CuCl2+2NaOH=Cu(OH)2↓+2NaNO3

Амфотерные соединения – это вещества, которые в зависимости от условий реакций проявляют кислотные или основные свойства.

Ам­фо­тер­ные гид­рок­си­ды – нерас­тво­ри­мые в воде ве­ще­ства, и при на­гре­ва­нии они раз­ла­га­ют­ся на оксид ме­тал­ла и воду:

Zn(OH) 2 = ZnO + H 2 O

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

При­ме­ром ам­фо­тер­но­го гид­рок­си­да может слу­жить гид­рок­сид цинка. Фор­му­ла этого гид­рок­си­да в ос­нов­ной форме – Zn(OH) 2 . Но можно за­пи­сать фор­му­лу гид­рок­си­да цинка в кис­лот­ной форме, по­ста­вив на пер­вое место атомы во­до­ро­да, как в фор­му­лах неор­га­ни­че­ских кис­лот: H 2 ZnO 2 (Рис. 1). Тогда ZnO 2 2- будет кис­лот­ным остат­ком с за­ря­дом 2-.

Осо­бен­но­стью ам­фо­тер­но­го гид­рок­си­да яв­ля­ет­ся то, что в нем мало раз­ли­ча­ют­ся по проч­но­сти связи О-Н и Zn-O. От­сю­да и двой­ствен­ность свойств. В ре­ак­ци­ях с кис­ло­та­ми, го­то­вы­ми от­дать ка­ти­о­ны во­до­ро­да, гид­рок­си­ду цинка вы­год­но раз­ры­вать связь Zn-O, от­да­вая ОН-груп­пу и вы­сту­пая в роли ос­но­ва­ния. В ре­зуль­та­те таких ре­ак­ций об­ра­зу­ют­ся соли, в ко­то­рых цинк яв­ля­ет­ся ка­ти­о­ном, по­это­му их на­зы­ва­ют со­ля­ми ка­ти­он­но­го типа:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

Амфотерные оксиды - солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от III до IV, за исключением ZnO, BeO, SnO, PbO.

Амфотерные оксиды обладают двойственной природой: они могут взаимодействовать с кислотами и с основаниями (щелочами):

Al 2 O 3 + 6HCl = 2AlCl 3 + 3 H 2 O,

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na.

Типичные амфотерные оксиды: H 2 O, BeO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 и др.

9. Химическая термодинамика. Понятия системы, энтропия, энтальпия, тепловой эффект химической реакции, закон Гесса и его следствие. Эндотерм и Экзотерм реакции, 1 и 2 законы термодинамики, Скорость химической реакции (факторы влияющие), правило Вант- Гоффа, уравнение Вант- Гоффа.

Химическая термодинамика – наука, изучающая условия устойчивости систем и законы.

Термодинамика – наука о макросистемах.

Термодинамическая система – макроскопическая часть окружающего мира, в которой протекают различные физические и химические процессы.

Дисперсной системой называется гетерогенная система, в которой мелкие частицы одной фазы равномерно распределены в объеме другой фазы.

Энтропия (От греческого entropia) - поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтальпия (тепловая функция, теплосодержание) - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении.

Тепловые эффекты принято указывать в термохимических уравнениях химических реакций, используя значения энтальпии (теплосодержания) системы ΔН.

Если ΔН < 0, то теплота выделяется, т.е. реакция является экзотермической.

Для эндотермических реакций ΔН > 0.

Тепловой эффект химической реакции - это выделенная или поглощенная теплота при данных количествах реагирующих веществ.

Тепловой эффект реакции зависит от состояния веществ.

Рассмотрим термохимическое уравнение реакции водорода с кислородом:

2H 2 (г )+ O 2 (г )= 2H 2 O (г ), ΔH =−483.6 кДж

Эта запись означает, что при взаимодействии 2 моль водорода с 1 моль кислорода образуются 2 моль воды в газообразном состоянии. При этом выделяется 483.6(кДж) теплоты.

Закон Гесса - Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Следствия из закона Гесса:

Тепловой эффект обратной реакции равен тепловому эффекту прямой реакции с обратным знаком, т.е. для реакций

отвечающие им тепловые эффекты связаны равенством

2. Если в результате ряда последовательных химических реакций система приходит в состояние, полностью совпадающее с исходным (круговой процесс), то сумма тепловых эффектов этих реакций равна нулю, т.е. для ряда реакций

сумма их тепловых эффектов

Под энтальпией образования понимают тепловой эффект реакции образования 1 моля вещества из простых веществ. Обычно используют стандартные энтальпии образования. Их обозначают или (часто один из индексов опускают; f – от англ. formation).

Первое начало термодинамики - Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах -джоулях (как и энергию).

где ΔU - изменение внутренней энергии, A - работа внешних сил, Q - количество теплоты, переданной системе.

Второе начало термодинамики - Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза.

Уравнение, которое описывает это правило, следующее:{\displaystyle ~V_{2}=V_{1}\cdot \gamma ^{\frac {T_{2}-T_{1}}{10}}}

где V 2 – скорость протекания реакции при температуре t 2 , а V 1 – скорость протекания реакции при температуре t 1 ;

ɣ - температурный коэффициент скорости реакции. (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Эндотерми́ческие реа́кции - химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения{\displaystyle \Delta H>0}{\displaystyle \Delta U>0}, таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

К эндотермическим реакциям относятся:

    реакции восстановления металлов из оксидов,

    электролиза (поглощается электрическая энергия),

    электролитической диссоциации (например, растворение солей в воде),

    ионизации,

    взрыв воды-подводимое к малому количеству воды большое количество тепла тратится на мгновенный нагрев и фазовый переход жидкости в перегретый пар,при этом внутреняя энергия увеличивается и проявляется в виде двух энергий пара-внутримолекулярной тепловой и межмолекулярной потенциальной.

    фотосинтеза.

Экзотермическая реакция - химическая реакция, сопровождающаяся выделением теплоты. Противоположна эндотермической реакции.

Существует три основных класса неорганических химических соединений: оксиды, гидроксиды и соли. Первые делятся на две группы: несолеобразующие (к ним относятся угарный газ, закись азота, монооксид азота и т. д.) и солеобразующие, которые, в свою очередь, бывают основными, кислотными и амфотерными. Гидроксиды делятся на кислоты, основания и амфотерные. Соли существуют основные, кислые, средние и двойные. Ниже будут более подробно описаны амфотерные оксиды и гидроксиды.

Что такое амфотерность?

Это способность неорганического химического вещества проявлять как кислотные, так и основные свойства, в зависимости от условий реакции. К веществам, которые обладают такого рода особенностью, могут относиться оксиды и гидроксиды. Среди первых можно назвать оксид и диоксид олова, бериллия, марганца, цинка, железа (ІІ), (ІІІ). Амфотерные гидроксиды представлены такими веществами: гидроксид бериллия, алюминия, железа (ІІ), метагидроксид железа, алюминия, дигидроксид-оксид титана. Самыми распространенными и часто используемыми из перечисленных выше соединений являются оксид железа и алюминия, а также гидроксиды этих металлов.

Химические свойства амфотерных оксидов

Амфотерные оксиды имеют одновременно как свойства кислотных, так и основных соединений. Как кислотные, они могут взаимодействовать со щелочами. При такого типа реакциях образуются соль и вода. Также они вступают в химическую реакцию с основными оксидами. Проявляя свои основные свойства, они вступают во взаимодействиескислотами, вследствие чего образуются соль и вода, а также с кислотными оксидами, благодаря чему можно получить соль.

Примеры уравнений реакций, в которых участвуют амфотерные оксиды

АІ 2 О 3 + 2КОН = 2КАІО 2 + Н 2 О — данная реакция показывает кислотные свойства амфотерных оксидов. 2АІ 2 О 3 + 6НСІ = 4АІСІ 3 + 3Н 2 О; АІ 2 О 3 + 3СО 2 = АІ2(СО 3) 3 — эти уравнения служат примером основных химических свойств таких оксидов.

Химические свойства амфотерных гидроксидов

Они способны вступать в химическое взаимодействие как с сильными кислотами, так и со щелочами, а некоторые из них реагируют также со слабыми кислотами. Все они при воздействии высоких температур распадаются на оксид и воду. При реакции амфотерного гидроксида с кислотой образуются соль и вода. Все такие гидроксиды нерастворимы в воде, поэтому могут реагировать только с растворами определенных соединений, но не с сухими веществами.

Физические свойства амфотерных оксидов, способы их получения и применение

Оксид ферума (ІІ) — пожалуй, самый распространенный амфотерный оксид. Способов его получения существует довольно много. Он широко используется в промышленности. Другие амфотерные оксиды также применяются во многих отраслях: от металлургии до пищевой промышленности.

Внешний вид, получение и использование ферум (ІІ) оксида

Он представляет собой твердое вещество черного цвета. Его кристаллическая решетка схожа с решеткой пищевой соли. В природе его можно найти в виде минерала вюстита.
Данное химическое соединение получают четырьмя различными способами. Первый — восстановление оксида железа (ІІІ) с использованием угарного газа. При этом, смешав одинаковое количество этих двух веществ, можно получить две части оксида железа (ІІ) и одну — углекислого газа. Второй метод получения — взаимодействие железа с его оксидами, к примеру, ферум (ІІІ) оксидом, при этом не образуется никаких побочных продуктов.

Однако для такой реакции необходимо создать условия в виде высокой температуры — 900-1000 градусов по Цельсию. Третий способ — реакция между железом и кислородом, в этом случае образуется только оксид железа (ІІ). Для осуществления данного процесса также понадобится нагревание исходных веществ. Четвертым методом получения является оксалата двухвалентного железа. Для такой реакции необходима высокая температура, а также вакуум. В результате образуются ферум (ІІ) оксид, углекислый и угарный газ в соотношении 1:1:1. Из написанного выше можно сделать вывод, что самым простым и не требующим специальных условий является первый способ получения данного вещества. Применяют оксид железа (ІІ) для выплавки чугуна, также он является одной из составляющих некоторых красителей, используется в процессе чернения стали.

Оксид железа (ІІІ)

Это не менее распространенный амфотерный оксид, чем описанный выше. При нормальных условиях он представляет собой твердое вещество, имеющее красно-коричневый цвет. В природе может встретиться в виде минерала гематита, который используется в изготовлении украшений. В промышленности данное вещество получило широкое применение: его используют для окрашивания некоторых строительных материалов, таких как кирпич, тротуарная плитка и т. д., в изготовлении красок, в том числе полиграфических, и эмалей. Также рассматриваемое вещество служит пищевым красителем под названием Е172. В химической отрасли его применяют при производстве аммиака в качестве катализатора.

Оксид алюминия

Амфотерные оксиды также включают в свой список и оксид алюминия. Данное вещество при нормальных условиях имеет твердое состояние. Цвет этого оксида белый. В природе его часть можно встретить в виде глинозема, а также сапфира и рубина. Используется в основном в химической промышленности в качестве катализатора. Но также его применяют и в изготовлении керамики.

Оксид цинка

Это химическое соединение также обладает амфотерностью. Это твердое вещество, не имеющее цвета, в воде не растворяется. Получают его в основном посредством разложения различных соединений цинка. К примеру, его нитрата. При этом выделяется оксид цинка, диоксид азота и кислород. Также можно добыть данное вещество посредством разложения карбоната цинка. При такой реакции, кроме нужного соединения, выделяется еще и углекислый газ. Также возможен распад гидроксида цинка на его оксид и воду. Для того чтобы осуществить все три выше перечисленных процесса, требуется воздействие высокой температуры. Применяют оксид цинка в различных отраслях промышленности, например, в химической (в качестве катализатора) для изготовления стекла, в медицине для лечения кожных дефектов.

Оксид бериллия

Получают его в основном путем термического разложения гидроксида данного элемента. При этом также образуется вода. Он имеет вид твердого бесцветного вещества. Применение свое данный оксид находит в различных отраслях промышленности в качестве термостойкого материала.

Оксид олова

Имеет темный цвет, обладает твердым состоянием при нормальных условиях. Получить его возможно, как и многие другие амфотерные оксиды, посредством разложения его гидроксида. В результате образуется рассматриваемое вещество и вода. Для этого также нужно воздействие высокой температуры. Используется данное соединение в химической промышленности в качестве восстановителя в окислительно-восстановительных реакциях, реже применяется как катализатор.

Свойства, получение и применение амфотерных гидроксидов

Амфотерные гидроксиды используются не менее широко, нежели оксиды. Благодаря своему разностороннему химическому поведению, они в основном применяются для получения всевозможных соединений. Кроме того, гидроксид железа (бесцветное твердое вещество) используется в изготовлении аккумуляторов; гидроксид алюминия — для очистки воды; гидроксид бериллия — для получения оксида.

1) В реакциях с кислотами эти соединения проявляют основные свойства, как обычные основания:

Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O; Zn(OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями амфотерные гидроксиды проявляют кислотные свойства и образуют соли. В этом случае амфотерный металл входит в состав аниона кислоты. Амфотерные металлы могут образовывать разные кислотные остатки в зависимости от условий проведения реакции:

В водном растворе:

Al(OH) 3 + 3NaOH → Na 3 ; Zn(OH) 2 + 2NaOH →Na 2 ,

При сплавлении твёрдых веществ:

Al(OH) 3 + NaOH → NaAlO 2 + 2H 2 O; Zn(OH) 2 + 2NaOH →Na 2 ZnO 2 + 2H 2 O

Оксиды

Оксиды – это вещества, состоящие из двух элементов, один из которых кислород, который находится в степени окисления -2. Они делятся по своим свойствам на основные, амфотерные и кислотные.

Основные оксиды – это оксиды металлов с основными свойствами. К ним относятся большинство оксидов металлов со степенью окисления +1 и +2.

Амфотерные оксиды – в зависимости от условий могут проявлять основные или кислотные свойства. К ним относятся оксиды большинства металлов со степенью окисления +3 и +4, а также некоторые оксиды металлов со степенью окисления +2, например Al 2 O 3 , Cr 2 O 3 , ZnO, BeO.

Кислотные оксиды – это оксиды неметаллов и оксиды металлов, в которых степень окисления металла +5 и выше. Эти оксиды обладают кислотными свойствами и образуют кислоты.

Свойства основных оксидов

1) Основные оксиды реагируют с водой, если образуется растворимый гидроксид:

CaO + H 2 O → Ca(OH) 2 ; Na 2 O + H 2 O → 2NaOH.

2) Основные оксиды могут реагировать с кислотными оксидами:

CaO + SO 3 → CaSO 4 ; Na 2 O + CO 2 → Na 2 CO 3 .

3) Основные оксиды реагируют с кислотами:

MgO + 2HCl → MgCl 2 + H 2 O; Na 2 O + 2HNO 3 → 2NaNO 3 + H 2 O.

Свойства амфотерных оксидов

1) С кислотами они реагируют, как обычные основные оксиды:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O; ZnO + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями они проявляют кислотные свойства и образуют такие же кислотные анионы, как и амфотерные гидроксиды:

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3 ;

ZnO + 2NaOH + H 2 O → Na 2 .

При сплавлении твёрдых веществ:

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O; ZnO + 2NaOH →Na 2 ZnO 2 + H 2 O.

Свойства кислотных оксидов

1) Реагируют с водой, если получается растворимая кислота:

SO 3 + H 2 O → H 2 SO 4 ; P 2 O 5 + 3H 2 O → 2H 3 PO 4 .

2) Кислотные оксиды могут реагировать с основными оксидами:

SO 3 + MgO → CaSO 4 ; CO 2 + CaO → CaCO 3 .


3) Кислотные оксиды реагируют с основаниями:

SO 3 + NaOН→ Na 2 SO 4 + H 2 O; CO 2 + Ca(OН) 2 → CaCO 3 + H 2 O.

Соли

Соли – это вещества, при первичной диссоциации которых не образуются ни ионы Н + , ни ионы ОН - . Это продукты взаимодействия кислот и оснований.

Например: NaCl=Na + +Cl - ;

Ca(HCO 3) 2 =Ca 2+ +2HCO 3 - ;

AlOH(NO 3) 2 =AlOH 2+ +2NO 3 -

Средние соли состоят из анионов и катионов, которые не содержат Н + и ОН - , например: Na 2 SO 4 – сульфат натрия, CaCO 3 – карбонат кальция. Кислые соли содержат катион водорода Н + , например: NaHCO 3 – гидрокарбонат натрия. Основные соли содержат анион ОН - , например (CaOH) 2 CO 3 – гидроксокарбонат кальция.

Для химических свойств всех солей характерны реакции обмена.

1) Соли могут реагировать с кислотами:

а) Сильная кислота вытесняет слабую кислоту из её соли.

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓.

б) Многоосновная кислота может реагировать со своей средней солью с образованием кислых солей.

Na 2 CO 3 + H 2 CO 3 → 2NaHCO 3 ; CuSO 4 + H 2 SO 4 → Cu(HSO 4) 2 .

2) Растворимые соли могут реагировать с растворимыми основаниями, если в результате реакции получится нерастворимое вещество:

2NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaOH.

3) Две растворимые соли могут реагировать друг с другом, если в результате реакции получится нерастворимое вещество:

NaCl + AgNO 3 → NaNO 3 + AgCl↓.

4) Соли могут реагировать с металлами. В этих реакциях активный металл вытесняет менее активный из его соли.